题意:给一个多边形(有可能是凹多边形)。问有多少种可以使得它稳定放置的方式。当然稳定的原则就是重心做垂线在支撑点之内。

解法:由于有可能是凹多边形,所以先求出多边形的凸包,这是在放置时候会接触地面的全部点。

然后将重心与每天凸边推断是否稳定。

代码:

/******************************************************
* @author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string.h>
//freopen ("in.txt" , "r" , stdin);
using namespace std; #define eps 1e-8
#define zero(_) (_<=eps)
const double pi=acos(-1.0);
typedef long long LL;
const int Max=100010;
const LL INF=0x3FFFFFFF;
struct point
{
double x,y;
};
point points[50005];
point focus;
int top;
int stack[50005];
int N;
double mult(point a,point b,point c)
{
a.x-=c.x;
a.y-=c.y;
b.x-=c.x;
b.y-=c.y;
return a.x*b.y-a.y*b.x;
} double dis(const point& a,const point& b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
} bool operator<(point a,point b)
{
if(mult(a,b,points[0])>0||(mult(a,b,points[0])==0 && a.x<b.x))
return true;
else
return false;
}
point OK(point a,point b,point c)
{
point ans;
ans.x=(a.x+b.x+c.x)/3;
ans.y=(a.y+b.y+c.y)/3;
return ans;
}
void getFocus(point& focus,point* points,int N)
{
focus.x=0;
focus.y=0;
double base=0;
for(int i=2; i<N; i++)
{
double t=mult(points[0],points[i-1],points[i]);
point pp=OK(points[0],points[i-1],points[i]);
focus.x+=t*pp.x;
focus.y+=t*pp.y;
base+=t;
}
focus.x/=base;
focus.y/=base;
}
int getans()
{
int ans=0;
for(int i=0; i<top; i++)
{
double l=dis(focus,points[stack[i]]);
double r=dis(focus,points[stack[i+1]]);
double u=dis(points[stack[i]],points[stack[i+1]]);
if(l+u>r&&r+u>l)
ans++;
}
double l=dis(focus,points[stack[top]]);
double r=dis(focus,points[stack[0]]);
double u=dis(points[stack[top]],points[stack[0]]);
if(l+u>r&&r+u>l)
ans++;
return ans;
}
void graham(int n)
{
int mi=0;
for(int i=1; i<n; i++)
{
if(points[i].y<points[mi].y||(points[i].y==points[mi].y&&points[i].x<points[mi].x))
mi=i;
}
point a=points[0];
points[0]=points[mi];
points[mi]=a;
sort(points+1,points+n);
stack[0]=0;
stack[1]=1;
stack[2]=2;
top=2;
for(int i=3; i<n; i++)
{
while(top>0&&mult(points[stack[top]],points[stack[top-1]],points[i])>=0)
{
top--;
}
stack[++top]=i;
}
} int main()
{
int t;
cin>>t;
while(t--)
{
scanf("%d",&N);
for(int i=0; i<N; i++)
{
scanf("%lf%lf",&points[i].x,&points[i].y);
}
getFocus();
graham(N);
cout<<getans()<<endl;
}
return 0;
}

05-22 15:56