1.质量集中在顶点上。n个顶点坐标为(xi,yi),质量为mi,则重心(∑( xi×mi ) / ∑mi, ∑( yi×mi ) / ∑mi)
2.质量分布均匀。这个题就是这一类型,算法和上面的不同。
特殊地,质量均匀的三角形重心:(( x0 + x1 + x2 ) / 3,Y = ( y0 + y1 + y2 ) / 3)
以(0,0)为顶点三角剖分之后求三角形重心,把重心连起来转换成质量集中在顶点上的情况求解即可
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=1000005;
int T,n;
double am;
struct dian
{
double x,y,v;
dian(double X=0,double Y=0)
{
x=X,y=Y;
}
dian operator + (const dian &a) const
{
return dian(x+a.x,y+a.y);
}
dian operator - (const dian &a) const
{
return dian(x-a.x,y-a.y);
}
dian operator * (const double &a) const
{
return dian(x*a,y*a);
}
dian operator / (const double &a) const
{
return dian(x/a,y/a);
}
}p[N],a;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double cj(dian a,dian b)
{
return a.x*b.y-a.y*b.x;
}
int main()
{
T=read();
while(T--)
{
n=read();am=0,a.x=0,a.y=0;
for(int i=1;i<=n;i++)
p[i].x=read(),p[i].y=read();
p[n+1]=p[1];
for(int i=2;i<=n+1;i++)
{
double mj=cj(p[i-1],p[i]);
am+=mj,a=a+(p[i-1]+p[i])*mj;
}
printf("%.2f %.2f\n",a.x/am/3,a.y/am/3);
}
return 0;
}