目录

一、巧用索引与变量

1. 无索引对比测试

(1)使用相关子查询

(2)使用表连接

(3)使用变量

2. 建立created_time和item_name上的联合索引对比测试

(1)使用相关子查询

(2)使用表连接

(3)使用变量

(4)使用变量,并且消除嵌套查询

二、利用窗口函数

三、多线程并行执行

1. 数据分片

(1)查询出4份数据的created_time边界值

(2)查看每份数据的记录数,确认数据平均分布

2. 建立查重的存储过程

3. 并行执行

(1)shell后台进程

(2)MySQL Schedule Event


 

  • 问题提出

源表t_source结构如下:
item_id int,
created_time datetime,
modified_time datetime,
item_name varchar(20),
other varchar(20)

        要求:

  1. 源表中有100万条数据,其中有50万created_time和item_name重复。
  2. 要把去重后的50万数据写入到目标表。
  3. 重复created_time和item_name的多条数据,可以保留任意一条,不做规则限制。
  • 实验环境

Linux虚机:CentOS release 6.4;8G物理内存(MySQL配置4G);100G机械硬盘;双物理CPU双核,共四个处理器;MySQL 8.0.16。

  • 建立测试表和数据
-- 建立源表
create table t_source  
(  
  item_id int,  
  created_time datetime,  
  modified_time datetime,  
  item_name varchar(20),  
  other varchar(20)  
);  

-- 建立目标表
create table t_target like t_source; 

-- 生成100万测试数据,其中有50万created_time和item_name重复
delimiter //      
create procedure sp_generate_data()    
begin     
    set @i := 1;   
    
    while @i<=500000 do  
        set @created_time := date_add('2017-01-01',interval @i second);  
        set @modified_time := @created_time;  
        set @item_name := concat('a',@i);  
        insert into t_source  
        values (@i,@created_time,@modified_time,@item_name,'other');  
        set @i:=@i+1;    
    end while;  
    commit;    
    
    set @last_insert_id := 500000;  
    insert into t_source  
    select item_id + @last_insert_id,  
           created_time,  
           date_add(modified_time,interval @last_insert_id second),  
           item_name,  
           'other'   
      from t_source;  
    commit;
end     
//      
delimiter ;     
    
call sp_generate_data();  

-- 源表没有主键或唯一性约束,有可能存在两条完全一样的数据,所以再插入一条记录模拟这种情况。
insert into t_source select * from t_source where item_id=1;

        源表中有1000001条记录,去重后的目标表应该有500000条记录。

mysql> select count(*),count(distinct created_time,item_name) from t_source;
+----------+----------------------------------------+
| count(*) | count(distinct created_time,item_name) |
+----------+----------------------------------------+
|  1000001 |                                 500000 |
+----------+----------------------------------------+
1 row in set (1.92 sec)

一、巧用索引与变量

1. 无索引对比测试

(1)使用相关子查询

truncate t_target;  
insert into t_target  
select distinct t1.* from t_source t1 where item_id in   
(select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);

        这个语句很长时间都出不来结果,只看一下执行计划吧。

mysql> explain select distinct t1.* from t_source t1 where item_id in   
    -> (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);  
+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
| id | select_type        | table | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra                        |
+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
|  1 | PRIMARY            | t1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 997282 |   100.00 | Using where; Using temporary |
|  2 | DEPENDENT SUBQUERY | t2    | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 997282 |     1.00 | Using where                  |
+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
2 rows in set, 3 warnings (0.00 sec)

        主查询和相关子查询都是全表扫描,一共要扫描100万*100万数据行,难怪出不来结果。

(2)使用表连接

truncate t_target;  
insert into t_target  
select distinct t1.* from t_source t1,  
(select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2  
where t1.item_id = t2.item_id;

        这种方法用时14秒,查询计划如下:

mysql> explain select distinct t1.* from t_source t1,   (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2   where t1.item_id = t2.item_id;
+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| id | select_type | table      | partitions | type | possible_keys | key         | key_len | ref             | rows   | filtered | Extra                        |
+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
|  1 | PRIMARY     | t1         | NULL       | ALL  | NULL          | NULL        | NULL    | NULL            | 997282 |   100.00 | Using where; Using temporary |
|  1 | PRIMARY     | <derived2> | NULL       | ref  | <auto_key0>   | <auto_key0> | 5       | test.t1.item_id |     10 |   100.00 | Distinct                     |
|  2 | DERIVED     | t_source   | NULL       | ALL  | NULL          | NULL        | NULL    | NULL            | 997282 |   100.00 | Using temporary              |
+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
3 rows in set, 1 warning (0.00 sec)
  • 内层查询扫描t_source表的100万行,建立临时表,找出去重后的最小item_id,生成导出表derived2,此导出表有50万行。
  • MySQL会在导出表derived2上自动创建一个item_id字段的索引auto_key0。
  • 外层查询也要扫描t_source表的100万行数据,在与导出表做链接时,对t_source表每行的item_id,使用auto_key0索引查找导出表中匹配的行,并在此时优化distinct操作,在找到第一个匹配的行后即停止查找同样值的动作。

(3)使用变量

set @a:='1000-01-01 00:00:00';  
set @b:=' ';  
set @f:=0;  
truncate t_target;  
insert into t_target  
select item_id,created_time,modified_time,item_name,other  
  from   
(select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name  
  from   
(select * from t_source order by created_time,item_name) t0) t1 where f=1;

        这种方法用时13秒,查询计划如下:

mysql> explain select item_id,created_time,modified_time,item_name,other  
    ->   from   
    -> (select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name  
    ->   from   
    -> (select * from t_source order by created_time,item_name) t0) t1 where f=1; 
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| id | select_type | table      | partitions | type | possible_keys | key         | key_len | ref   | rows   | filtered | Extra          |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
|  1 | PRIMARY     | <derived2> | NULL       | ref  | <auto_key0>   | <auto_key0> | 4       | const |     10 |   100.00 | NULL           |
|  2 | DERIVED     | <derived3> | NULL       | ALL  | NULL          | NULL        | NULL    | NULL  | 997282 |   100.00 | NULL           |
|  3 | DERIVED     | t_source   | NULL       | ALL  | NULL          | NULL        | NULL    | NULL  | 997282 |   100.00 | Using filesort |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
3 rows in set, 5 warnings (0.00 sec)
  • 最内层的查询扫描t_source表的100万行,并使用文件排序,生成导出表derived3。
  • 第二层查询要扫描derived3的100万行,生成导出表derived2,完成变量的比较和赋值,并自动创建一个导出列f上的索引auto_key0。
  • 最外层使用auto_key0索引扫描derived2得到去重的结果行。

        与上面方法2比较,总的扫描行数不变,都是200万行。只存在一点微小的差别,这次自动生成的索引是在常量列 f 上,而表关联自动生成的索引是在item_id列上,所以查询时间几乎相同。

        至此,我们还没有在源表上创建任何索引。无论使用哪种写法,要查重都需要对created_time和item_name字段进行排序,因此很自然地想到,如果在这两个字段上建立联合索引,利用索引本身有序的特性消除额外排序,从而提高查询性能。

2. 建立created_time和item_name上的联合索引对比测试

-- 建立created_time和item_name字段的联合索引
create index idx_sort on t_source(created_time,item_name,item_id);  
analyze table t_source; 

(1)使用相关子查询

truncate t_target;  
insert into t_target  
select distinct t1.* from t_source t1 where item_id in   
(select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name); 

        本次用时19秒,查询计划如下:

mysql> explain select distinct t1.* from t_source t1 where item_id in   
    -> (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);  
+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
| id | select_type        | table | partitions | type | possible_keys | key      | key_len | ref                                    | rows   | filtered | Extra                        |
+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
|  1 | PRIMARY            | t1    | NULL       | ALL  | NULL          | NULL     | NULL    | NULL                                   | 997281 |   100.00 | Using where; Using temporary |
|  2 | DEPENDENT SUBQUERY | t2    | NULL       | ref  | idx_sort      | idx_sort | 89      | test.t1.created_time,test.t1.item_name |      2 |   100.00 | Using index                  |
+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
2 rows in set, 3 warnings (0.00 sec)
  • 外层查询的t_source表是驱动表,需要扫描100万行。
  • 对于驱动表每行的item_id,通过idx_sort索引查询出两行数据。

(2)使用表连接

truncate t_target;  
insert into t_target  
select distinct t1.* from t_source t1,  
(select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2  
where t1.item_id = t2.item_id;

        本次用时13秒,查询计划如下:

mysql> explain select distinct t1.* from t_source t1,  
    -> (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2  
    -> where t1.item_id = t2.item_id;  
+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| id | select_type | table      | partitions | type  | possible_keys | key         | key_len | ref             | rows   | filtered | Extra                        |
+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
|  1 | PRIMARY     | t1         | NULL       | ALL   | NULL          | NULL        | NULL    | NULL            | 997281 |   100.00 | Using where; Using temporary |
|  1 | PRIMARY     | <derived2> | NULL       | ref   | <auto_key0>   | <auto_key0> | 5       | test.t1.item_id |     10 |   100.00 | Distinct                     |
|  2 | DERIVED     | t_source   | NULL       | index | idx_sort      | idx_sort    | 94      | NULL            | 997281 |   100.00 | Using index                  |
+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
3 rows in set, 1 warning (0.00 sec)

        和没有索引相比,子查询虽然从全表扫描变为了全索引扫描,但还是需要扫描100万行记录。因此查询性能提升并不是明显。

(3)使用变量

set @a:='1000-01-01 00:00:00';  
set @b:=' ';  
set @f:=0;  
truncate t_target;  
insert into t_target  
select item_id,created_time,modified_time,item_name,other  
  from   
(select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name  
  from   
(select * from t_source order by created_time,item_name) t0) t1 where f=1;  

        本次用时13秒,查询计划与没有索引时的完全相同。可见索引对这种写法没有作用。能不能消除嵌套,只用一层查询出结果呢?

(4)使用变量,并且消除嵌套查询

set @a:='1000-01-01 00:00:00';  
set @b:=' ';  
truncate t_target;  
insert into t_target  
select * from t_source force index (idx_sort)  
 where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null  
 order by created_time,item_name;  

        本次用时12秒,查询计划如下:

mysql> explain select * from t_source force index (idx_sort)  
    ->  where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null  
    ->  order by created_time,item_name;
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
| id | select_type | table    | partitions | type  | possible_keys | key      | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | t_source | NULL       | index | NULL          | idx_sort | 94      | NULL | 997281 |    99.00 | Using where |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
1 row in set, 3 warnings (0.00 sec)

        该语句具有以下特点:

  • 消除了嵌套子查询,只需要对t_source表进行一次全索引扫描,查询计划已达最优。
  • 无需distinct二次查重。
  • 变量判断与赋值只出现在where子句中。
  • 利用索引消除了filesort。

        在MySQL 8之前,该语句是单线程去重的最佳解决方案。仔细分析这条语句,发现它巧妙地利用了SQL语句的逻辑查询处理步骤和索引特性。一条SQL查询的逻辑步骤为:

  1. 执行笛卡尔乘积(交叉连接)
  2. 应用ON筛选器(连接条件)
  3. 添加外部行(outer join)
  4. 应用where筛选器
  5. 分组
  6. 应用cube或rollup
  7. 应用having筛选器
  8. 处理select列表
  9. 应用distinct子句
  10. 应用order by子句
  11. 应用limit子句

        每条查询语句的逻辑执行步骤都是这11步的子集。拿这条查询语句来说,其执行顺序为:强制通过索引idx_sort查找数据行 -> 应用where筛选器 -> 处理select列表 -> 应用order by子句。

        为了使变量能够按照created_time和item_name的排序顺序进行赋值和比较,必须按照索引顺序查找数据行。这里的force index (idx_sort)提示就起到了这个作用,必须这样写才能使整条查重语句成立。否则,因为先扫描表才处理排序,因此不能保证变量赋值的顺序,也就不能确保查询结果的正确性。order by子句同样不可忽略,否则即使有force index提示,MySQL也会使用全表扫描而不是全索引扫描,从而使结果错误。索引同时保证了created_time,item_name的顺序,避免了文件排序。force index (idx_sort)提示和order by子句缺一不可,索引idx_sort在这里可谓恰到好处、一举两得。

        查询语句开始前,先给变量初始化为数据中不可能出现的值,然后进入where子句从左向右判断。先比较变量和字段的值,再将本行created_time和item_name的值赋给变量,按created_time、item_name的顺序逐行处理。item_name是字符串类型,(@b:=item_name)不是有效的布尔表达式,因此要写成(@b:=item_name) is not null。

        最后补充一句,这里忽略了“insert into t_target select * from t_source group by created_time,item_name;”的写法,因为它受“sql_mode='ONLY_FULL_GROUP_BY'”的限制。

二、利用窗口函数

        MySQL 8中新增的窗口函数使得原来麻烦的去重操作变得很简单。

truncate t_target;  
insert into t_target 
select item_id, created_time, modified_time, item_name, other
  from (select *, row_number() over(partition by created_time,item_name) as rn
          from t_source) t where rn=1;

        这个语句执行只需要12秒,而且写法清晰易懂,其查询计划如下:

mysql> explain select item_id, created_time, modified_time, item_name, other
    ->   from (select *, row_number() over(partition by created_time,item_name) as rn
    ->           from t_source) t where rn=1;
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| id | select_type | table      | partitions | type | possible_keys | key         | key_len | ref   | rows   | filtered | Extra          |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
|  1 | PRIMARY     | <derived2> | NULL       | ref  | <auto_key0>   | <auto_key0> | 8       | const |     10 |   100.00 | NULL           |
|  2 | DERIVED     | t_source   | NULL       | ALL  | NULL          | NULL        | NULL    | NULL  | 997281 |   100.00 | Using filesort |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
2 rows in set, 2 warnings (0.00 sec)

        该查询对t_source表进行了一次全表扫描,同时用filesort对表按分区字段created_time、item_name进行了排序。外层查询从每个分区中保留一条数据。因为重复created_time和item_name的多条数据中可以保留任意一条,所以oevr中不需要使用order by子句。

        从执行计划看,窗口函数去重语句似乎没有消除嵌套查询的变量去重好,但此方法实际执行是最快的。

        MySQL窗口函数说明参见“https://dev.mysql.com/doc/refman/8.0/en/window-functions.html”。

三、多线程并行执行

        前面已经将单条查重语句调整到最优,但还是以单线程方式执行。能否利用多处理器,让去重操作多线程并行执行,从而进一步提高速度呢?比如我的实验环境是4处理器,如果使用4个线程同时执行查重SQL,理论上应该接近4倍的性能提升。

1. 数据分片

        在生成测试数据时,created_time采用每条记录加一秒的方式,也就是最大和在最小的时间差为50万秒,而且数据均匀分布,因此先把数据平均分成4份。


(1)查询出4份数据的created_time边界值

mysql> select date_add('2017-01-01',interval 125000 second) dt1,
    ->        date_add('2017-01-01',interval 2*125000 second) dt2,
    ->        date_add('2017-01-01',interval 3*125000 second) dt3,
    ->        max(created_time) dt4
    ->   from t_source;
+---------------------+---------------------+---------------------+---------------------+
| dt1                 | dt2                 | dt3                 | dt4                 |
+---------------------+---------------------+---------------------+---------------------+
| 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 2017-01-06 18:53:20 |
+---------------------+---------------------+---------------------+---------------------+
1 row in set (0.00 sec)

(2)查看每份数据的记录数,确认数据平均分布

mysql> select case when created_time >= '2017-01-01' 
    ->              and created_time < '2017-01-02 10:43:20'
    ->             then '2017-01-01'
    ->             when created_time >= '2017-01-02 10:43:20'
    ->              and created_time < '2017-01-03 21:26:40'
    ->             then '2017-01-02 10:43:20'
    ->             when created_time >= '2017-01-03 21:26:40' 
    ->              and created_time < '2017-01-05 08:10:00'
    ->             then '2017-01-03 21:26:40' 
    ->             else '2017-01-05 08:10:00'
    ->         end min_dt,
    ->        case when created_time >= '2017-01-01' 
    ->              and created_time < '2017-01-02 10:43:20'
    ->             then '2017-01-02 10:43:20'
    ->             when created_time >= '2017-01-02 10:43:20'
    ->              and created_time < '2017-01-03 21:26:40'
    ->             then '2017-01-03 21:26:40'
    ->             when created_time >= '2017-01-03 21:26:40' 
    ->              and created_time < '2017-01-05 08:10:00'
    ->             then '2017-01-05 08:10:00'
    ->             else '2017-01-06 18:53:20'
    ->         end max_dt,
    ->        count(*)
    ->   from t_source
    ->  group by case when created_time >= '2017-01-01' 
    ->              and created_time < '2017-01-02 10:43:20'
    ->             then '2017-01-01'
    ->             when created_time >= '2017-01-02 10:43:20'
    ->              and created_time < '2017-01-03 21:26:40'
    ->             then '2017-01-02 10:43:20'
    ->             when created_time >= '2017-01-03 21:26:40' 
    ->              and created_time < '2017-01-05 08:10:00'
    ->             then '2017-01-03 21:26:40' 
    ->             else '2017-01-05 08:10:00'
    ->         end,
    ->        case when created_time >= '2017-01-01' 
    ->              and created_time < '2017-01-02 10:43:20'
    ->             then '2017-01-02 10:43:20'
    ->             when created_time >= '2017-01-02 10:43:20'
    ->              and created_time < '2017-01-03 21:26:40'
    ->             then '2017-01-03 21:26:40'
    ->             when created_time >= '2017-01-03 21:26:40' 
    ->              and created_time < '2017-01-05 08:10:00'
    ->             then '2017-01-05 08:10:00'
    ->             else '2017-01-06 18:53:20'
    ->         end;
+---------------------+---------------------+----------+
| min_dt              | max_dt              | count(*) |
+---------------------+---------------------+----------+
| 2017-01-01          | 2017-01-02 10:43:20 |   249999 |
| 2017-01-02 10:43:20 | 2017-01-03 21:26:40 |   250000 |
| 2017-01-03 21:26:40 | 2017-01-05 08:10:00 |   250000 |
| 2017-01-05 08:10:00 | 2017-01-06 18:53:20 |   250002 |
+---------------------+---------------------+----------+
4 rows in set (4.86 sec)

        4份数据的并集应该覆盖整个源数据集,并且数据之间是不重复的。也就是说4份数据的created_time要连续且互斥,连续保证处理全部数据,互斥确保了不需要二次查重。实际上这和时间范围分区的概念类似,或许用分区表更好些,只是这里省略了重建表的步骤。

2. 建立查重的存储过程

        有了以上信息我们就可以写出4条语句处理全部数据。为了调用接口尽量简单,建立下面的存储过程。

delimiter //
create procedure sp_unique(i smallint)    
begin     
    set @a:='1000-01-01 00:00:00';  
    set @b:=' ';  
    if (i<4) then
        insert into t_target  
        select * from t_source force index (idx_sort)  
         where created_time >= date_add('2017-01-01',interval (i-1)*125000 second) 
           and created_time < date_add('2017-01-01',interval i*125000 second) 
           and (@a!=created_time or @b!=item_name) 
           and (@a:=created_time) is not null 
           and (@b:=item_name) is not null  
         order by created_time,item_name;  
    else 
    insert into t_target  
        select * from t_source force index (idx_sort)  
         where created_time >= date_add('2017-01-01',interval (i-1)*125000 second) 
           and created_time <= date_add('2017-01-01',interval i*125000 second) 
           and (@a!=created_time or @b!=item_name) 
           and (@a:=created_time) is not null 
           and (@b:=item_name) is not null  
         order by created_time,item_name;  
    end if;    
end     
//

        查询语句的执行计划如下:

mysql> explain select * from t_source force index (idx_sort)  
    ->          where created_time >= date_add('2017-01-01',interval (1-1)*125000 second) 
    ->            and created_time < date_add('2017-01-01',interval 1*125000 second) 
    ->            and (@a!=created_time or @b!=item_name) 
    ->            and (@a:=created_time) is not null 
    ->            and (@b:=item_name) is not null  
    ->          order by created_time,item_name; 
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
| id | select_type | table    | partitions | type  | possible_keys | key      | key_len | ref  | rows   | filtered | Extra                 |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
|  1 | SIMPLE      | t_source | NULL       | range | idx_sort      | idx_sort | 6       | NULL | 498640 |   100.00 | Using index condition |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
1 row in set, 3 warnings (0.00 sec)

        MySQL优化器进行索引范围扫描,并且使用索引条件下推(ICP)优化查询。

3. 并行执行

        下面分别使用shell后台进程和MySQL Schedule Event实现并行。

(1)shell后台进程

  • 建立duplicate_removal.sh文件,内容如下:
#!/bin/bash
mysql -vvv -u root -p123456 test -e "truncate t_target" &>/dev/null 
date '+%H:%M:%S'
for y in {1..4}
do
  sql="call sp_unique($y)"
  mysql -vvv -u root -p123456 test -e "$sql" &>par_sql1_$y.log &
done
wait
date '+%H:%M:%S'
  • 执行脚本文件
./duplicate_removal.sh

        执行输出如下:

[mysql@hdp2~]$./duplicate_removal.sh
14:27:30
14:27:35

        这种方法用时5秒,并行执行的4个过程调用分别用时为4.87秒、4.88秒、4.91秒、4.73秒:

[mysql@hdp2~]$cat par_sql1_1.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(1)
--------------
Query OK, 124999 rows affected (4.87 sec)
Bye
[mysql@hdp2~]$cat par_sql1_2.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(2)
--------------
Query OK, 125000 rows affected (4.88 sec)
Bye
[mysql@hdp2~]$cat par_sql1_3.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(3)
--------------
Query OK, 125000 rows affected (4.91 sec)
Bye
[mysql@hdp2~]$cat par_sql1_4.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(4)
--------------
Query OK, 125001 rows affected (4.73 sec)
Bye
[mysql@hdp2~]$

        可以看到,每个过程的执行时间均4.85,因为是并行执行,总的过程执行时间为最慢的4.91秒,比单线程速度提高了2.5倍。

(2)MySQL Schedule Event

  • 建立事件历史日志表
-- 用于查看事件执行时间等信息
create table t_event_history  (  
   dbname  varchar(128) not null default '',  
   eventname  varchar(128) not null default '',  
   starttime  datetime(3) not null default '1000-01-01 00:00:00',  
   endtime  datetime(3) default null,  
   issuccess  int(11) default null,  
   duration  int(11) default null,  
   errormessage  varchar(512) default null,  
   randno  int(11) default null
);
  • 为每个并发线程创建一个事件
delimiter //
create event ev1 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
begin
    declare r_code char(5) default '00000';  
    declare r_msg text;  
    declare v_error integer;  
    declare v_starttime datetime default now(3);  
    declare v_randno integer default floor(rand()*100001);  
      
    insert into t_event_history (dbname,eventname,starttime,randno) 
    #作业名    
    values(database(),'ev1', v_starttime,v_randno);    
     
    begin  
        #异常处理段  
        declare continue handler for sqlexception    
        begin  
            set v_error = 1;  
            get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;  
        end;  
          
        #此处为实际调用的用户程序过程  
        call sp_unique(1);  
    end;  
      
    update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;  
      
end
//     
 
create event ev2 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
begin
    declare r_code char(5) default '00000';  
    declare r_msg text;  
    declare v_error integer;  
    declare v_starttime datetime default now(3);  
    declare v_randno integer default floor(rand()*100001);  
      
    insert into t_event_history (dbname,eventname,starttime,randno) 
    #作业名    
    values(database(),'ev2', v_starttime,v_randno);    
     
    begin  
        #异常处理段  
        declare continue handler for sqlexception    
        begin  
            set v_error = 1;  
            get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;  
        end;  
          
        #此处为实际调用的用户程序过程  
        call sp_unique(2);  
    end;  
      
    update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;  
      
end
//  
 
create event ev3 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
begin
    declare r_code char(5) default '00000';  
    declare r_msg text;  
    declare v_error integer;  
    declare v_starttime datetime default now(3);  
    declare v_randno integer default floor(rand()*100001);  
      
    insert into t_event_history (dbname,eventname,starttime,randno) 
    #作业名    
    values(database(),'ev3', v_starttime,v_randno);    
     
    begin  
        #异常处理段  
        declare continue handler for sqlexception    
        begin  
            set v_error = 1;  
            get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;  
        end;  
          
        #此处为实际调用的用户程序过程  
        call sp_unique(3);  
    end;  
      
    update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;  
      
end
//  
 
create event ev4 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
begin
    declare r_code char(5) default '00000';  
    declare r_msg text;  
    declare v_error integer;  
    declare v_starttime datetime default now(3);  
    declare v_randno integer default floor(rand()*100001);  
      
    insert into t_event_history (dbname,eventname,starttime,randno) 
    #作业名    
    values(database(),'ev4', v_starttime,v_randno);    
     
    begin  
        #异常处理段  
        declare continue handler for sqlexception    
        begin  
            set v_error = 1;  
            get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;  
        end;  
          
        #此处为实际调用的用户程序过程  
        call sp_unique(4);  
    end;  
      
    update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;  
      
end
//

        为了记录每个事件执行的时间,在事件定义中增加了操作日志表的逻辑,因为每个事件中只多执行了一条insert,一条update,4个事件总共多执行8条很简单的语句,对测试的影响可以忽略不计。执行时间精确到毫秒。

  • 触发事件执行
mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"

        该命令行顺序触发了4个事件,但不会等前一个执行完才执行下一个,而是立即向下执行。这可从命令的输出可以清除看到:

[mysql@hdp2~]$mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
truncate t_target
--------------

Query OK, 0 rows affected (0.06 sec)

--------------
alter event ev1 on schedule at current_timestamp enable
--------------

Query OK, 0 rows affected (0.02 sec)

--------------
alter event ev2 on schedule at current_timestamp enable
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
alter event ev3 on schedule at current_timestamp enable
--------------

Query OK, 0 rows affected (0.02 sec)

--------------
alter event ev4 on schedule at current_timestamp enable
--------------

Query OK, 0 rows affected (0.00 sec)

Bye
[mysql@hdp2~]$
  • 查看事件执行日志
mysql> select * from test.t_event_history;
+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
| dbname | eventname | starttime               | endtime                 | issuccess | duration | errormessage | randno |
+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
| test   | ev1       | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.389 |         1 |  5389000 | NULL         |   NULL |
| test   | ev2       | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.344 |         1 |  5344000 | NULL         |   NULL |
| test   | ev3       | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.230 |         1 |  4230000 | NULL         |   NULL |
| test   | ev4       | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.344 |         1 |  4344000 | NULL         |   NULL |
+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
4 rows in set (0.00 sec)

        可以看到,每个过程的执行均为4.83秒,又因为是并行执行的,因此总的执行之间为最慢的5.3秒,优化效果和shell后台进程方式几乎相同。
 

08-02 09:36