用光流场方法,标出前景(运动)和背景(静止)。
环境:VS2017 + OpenCV3.4.1
光流场介绍可以参见英文版学习OpenCV3的第17章Tracking
英文原版学习OpenCV3下载链接
https://download.csdn.net/download/iefenghao/11194776
视频测试
步骤
(1)打开视频
(2)转为灰度图
(3)光流检测,标出前景
#include <iostream>
#include "opencv2/opencv.hpp" using namespace cv;
using namespace std; #define UNKNOWN_FLOW_THRESH 1e9
void makecolorwheel(vector<Scalar> &colorwheel)
{
int RY = 15;
int YG = 6;
int GC = 4;
int CB = 11;
int BM = 13;
int MR = 6; int i; for (i = 0; i < RY; i++) colorwheel.push_back(Scalar(255, 255 * i / RY, 0));
for (i = 0; i < YG; i++) colorwheel.push_back(Scalar(255 - 255 * i / YG, 255, 0));
for (i = 0; i < GC; i++) colorwheel.push_back(Scalar(0, 255, 255 * i / GC));
for (i = 0; i < CB; i++) colorwheel.push_back(Scalar(0, 255 - 255 * i / CB, 255));
for (i = 0; i < BM; i++) colorwheel.push_back(Scalar(255 * i / BM, 0, 255));
for (i = 0; i < MR; i++) colorwheel.push_back(Scalar(255, 0, 255 - 255 * i / MR));
} void motionToColor(Mat flow, Mat &color)
{
if (color.empty())
color.create(flow.rows, flow.cols, CV_8UC3); static vector<Scalar> colorwheel; //Scalar r,g,b
if (colorwheel.empty())
makecolorwheel(colorwheel); // determine motion range:
float maxrad = -1; // Find max flow to normalize fx and fy
for (int i = 0; i < flow.rows; ++i)
{
for (int j = 0; j < flow.cols; ++j)
{
Vec2f flow_at_point = flow.at<Vec2f>(i, j);
float fx = flow_at_point[0];
float fy = flow_at_point[1];
if ((fabs(fx) > UNKNOWN_FLOW_THRESH) || (fabs(fy) > UNKNOWN_FLOW_THRESH))
continue;
float rad = sqrt(fx * fx + fy * fy);
maxrad = maxrad > rad ? maxrad : rad;
}
} for (int i = 0; i < flow.rows; ++i)
{
for (int j = 0; j < flow.cols; ++j)
{
uchar *data = color.data + color.step[0] * i + color.step[1] * j;
Vec2f flow_at_point = flow.at<Vec2f>(i, j); float fx = flow_at_point[0] / maxrad;
float fy = flow_at_point[1] / maxrad;
if ((fabs(fx) > UNKNOWN_FLOW_THRESH) || (fabs(fy) > UNKNOWN_FLOW_THRESH))
{
data[0] = data[1] = data[2] = 0;
continue;
}
float rad = sqrt(fx * fx + fy * fy); float angle = atan2(-fy, -fx) / CV_PI;
float fk = (angle + 1.0) / 2.0 * (colorwheel.size() - 1);
int k0 = (int)fk;
int k1 = (k0 + 1) % colorwheel.size();
float f = fk - k0;
//f = 0; // uncomment to see original color wheel for (int b = 0; b < 3; b++)
{
float col0 = colorwheel[k0][b] / 255.0;
float col1 = colorwheel[k1][b] / 255.0;
float col = (1 - f) * col0 + f * col1;
if (rad <= 1)
col = 1 - rad * (1 - col); // increase saturation with radius
else
col *= .75; // out of range
data[2 - b] = (int)(255.0 * col);
}
}
}
} int main(int, char**)
{
VideoCapture cap;
//cap.open(0);
cap.open("srcVideo.mp4"); if (!cap.isOpened())
return -1; Mat prevgray, gray, flow, cflow, frame; Mat motion2color; for (;;)
{
double t = (double)cvGetTickCount(); cap >> frame;
cvtColor(frame, gray, CV_BGR2GRAY);
imshow("src 1210", frame); if (prevgray.data)
{
calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
motionToColor(flow, motion2color);
imshow("dst 1210", motion2color);
}
if (waitKey(10) >= 0)
break;
std::swap(prevgray, gray); t = (double)cvGetTickCount() - t;
cout << "cost time: " << t / ((double)cvGetTickFrequency()*1000.) << endl;
}
return 0;
}