Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

 

Description

大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的――HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

 

Input

输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
 

Output

对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
 

Sample Input

2 3
 

Sample Output

1 2

程序分析:又是一个只要有公式就很容易AC的题目。

       错排公式:f(n)=(n-1)*(f(n-1)+f(n-2))

下面用递推的方法推导错排公式:

 
 当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.   
 第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法 
 第二步,放编号为k的元素,这时有两种情况. 
 1,把它放到位置n,那么,对于剩下的n-2个元素,就有M(n-2)种方法; 
 2,不把它放到位置n,这时,对于这n-1个元素,有M(n-1)种方法; 
 综上得到
M(n)=(n-1)[M(n-2)+M(n-1)]
程序代码:
#include<stdio.h>
int main()
{
_int64 a[]={,,};
int n,i;
for(i=;i<;i++)
a[i]=i*(a[i-]+a[i-]);
while(scanf("%d",&n)!=EOF)
printf("%I64d\n",a[n-]);
return ;
}
05-08 08:44