程序实现 Softmax classifer, 没有隐含层,

f=wx+b

y=efi∑jefj

%% Softmax classifier

function  Out=Softmax_Classifier(train_x,  train_y, opts)

% setting learning parameters
step_size=opts.step_size;
reg=opts.reg;
batchsize = opts.batchsize;
numepochs = opts.numepochs;
K=opts.class; %% learn on the training set % initialize the parameters
D=size(train_x, 2);
W=0.01*randn(D,K);
b=zeros(1,K); loss(1 : numepochs)=0; num_examples=size(train_x, 1);
numbatches = num_examples / batchsize; for epoch=1:numepochs % % tic;
% %
% % sprintf('epoch %d: \n, ' , epoch) kk = randperm(num_examples);
loss(epoch)=0; for bat=1:numbatches batch_x = train_x(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
batch_y = train_y(kk((bat - 1) * batchsize + 1 : bat * batchsize), :); cc=repmat(b, batchsize , 1);
scores=batch_x*W+cc;
exp_scores=exp(scores);
dd=repmat(sum(exp_scores, 2), 1, K);
probs=exp_scores./dd;
correct_logprobs=-log(sum(probs.*batch_y, 2));
data_loss=sum(correct_logprobs)/batchsize;
reg_loss=0.5*reg*sum(sum(W.*W));
loss(epoch) =loss(epoch)+ data_loss + reg_loss; dscores = probs-batch_y;
dscores=dscores/batchsize; dW=batch_x'*dscores;
db=sum(dscores); dW=dW+reg*W; W=W-step_size*dW;
b=b-step_size*db; end loss(epoch)=loss(epoch)/numbatches; if (mod(epoch, 10)==0)
sprintf('epoch: %d, training loss is %f: \n', epoch, loss(epoch))
end % % toc; end Out.W=W;
Out.b=b;
Out.loss=loss; end
05-26 16:42