一、题目链接

  http://codeforces.com/contest/960/problem/B

二、题意

  给定一棵$N$个节点的树,每个节点的权值$V$。定义树中两点$u_1$和$u_m$的权值和为$A(u_1, u_m) = V_{u_1} - V{u_2} + V{u_3} - V{u_4} + \cdots + (-1)^{m+1}V{u_m}$。求$\sum\limits_{u_i=1}^{N}\sum\limits_{u_j=1}^{N}A(u_i, u_j)\ \%\ (10^9+7)$。

三、思路

  显然的树形$dp$。采用"两遍扫描"法。

  设$dp1[i]$表示:从$i$出发,在以$i$为根的子树中,可得到的权值和。那么,很容易想到一个式子:预处理$dp1[i]=V[i]$,表示从$i$走到$i$自己的$A$值。然后,对于$i$的所有子节点$j$,有$dp1[i]\ +=\ V[i] - dp1[j]$。在思路中,为表述简洁,我们不考虑取模。如果这样,那就大错特错了。你会发现,连样例2都过不去。画一棵链式树可以发现,其实正确的式子是,$dp1[i] += f[j] * V[i] - dp1[j]$,其中$f[j]$表示以$j$为根节点的子树中节点的个数。为什么要乘以$f[j]$,因为对于以$j$为根的子树中每一个节点$r$,节点$i$都要走一遍去计算$A(i, r)$,所以这个地方要乘以一个$f[j]$。我一开始就是没写,导致一直样例都过不去。

  设$dp2[i]$表示:从$i$出发,可得到的权值和(最后累加$dp2[i]$即可)。一遍扫描完成之后,显然有$dp2[1] = dp1[1]$(当然了,要看你的dfs是从哪个节点开始的)。然后,对于$i$的所有子节点$j$,有

  \[dp2[j] = 除去以j为根的子树中所有节点的个数*V[j] + dp1[j] - (dp2[i] - 以j为根的子树中所有节点的个数*V[i] + dp1[j])\]

  形式化(规范化)表示就是:

  \[dp2[j] = (N - f[j]) * V[j] + dp1[j] - (dp2[i] - f[j] * V[i] + dp1[j])\]

  即\[dp2[j] = (N - f[j]) * V[j]  - (dp2[i] - f[j] * V[i])\]

  注意这些"+"、“-”号的意义哦。在第一次扫描中减(实际上是+负的)了的,这里要加(实际上是-正的)回去,就等于没动(没+负也没-正)。同时,第一次加了$f[j] * V[i]$,那么,这一次要减去这个值。

  另外,要注意的就是,取模的问题。因为涉及负数和乘法,一次加模数再取模不一定能保证结果为正。所以,要对$dp1[i]$和$dp2[i]$分别做两次取模。

四、代码实现

  

#include<bits/stdc++.h>
using namespace std;
#define pb(x) push_back(x)
#define mk(x, y) make_pair(x, y)
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
;

template <class T> inline void read(T &x) {
    int t;
    bool flag = false;
    ')) ;
    ';
     + t - ';
    if(flag) x = -x;
}

typedef struct {
    int to, next;
} Edge;
Edge tree[MAXN * ];
int head[MAXN], cnt;

void add(int from, int to) {
    tree[cnt].to = to;
    tree[cnt].next = head[from];
    head[from] = cnt++;
}

void init() {
    memset(head, -, sizeof(head));
    cnt = ;
}

LL N, v[MAXN], dp0[MAXN], f0[MAXN], dp2[MAXN];
const LL MOD = 1000000007LL;

void dfs0(int root, int par) {
    dp0[root] = v[root], f0[root] = ;
    for(int i = head[root]; ~i; i = tree[i].next) {
        int to = tree[i].to;
        if(to != par) {
            dfs0(to, root);
            dp0[root] = (f0[to] * v[root] + dp0[root] - dp0[to] + MOD) % MOD;
            dp0[root] = (dp0[root] + MOD) % MOD;
            f0[root] += f0[to];
        }
    }
}

void dfs1(int root, int par) {
    for(int i = head[root]; ~i; i = tree[i].next) {
        int to = tree[i].to;
        if(to != par) {
            dp2[to] = ((N - f0[to]) * v[to] + dp0[to] - (dp2[root] + dp0[to] - f0[to] * v[root] + MOD) + MOD) % MOD;
            dp2[to] = (dp2[to] + MOD) % MOD;
            dfs1(to, root);
        }
    }
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("inputE.txt", "r", stdin);
#endif // ONLINE_JUDGE
    init();
    int a, b;
    read(N);
    ; i <= N; ++i)read(v[i]);
    ; i < N; ++i) {
        read(a), read(b);
        add(a, b);
        add(b, a);
    }
    dfs0(, -);
    dp2[] = dp0[];
    dfs1(, -);
    LL ans = ;
    ; i <= N; ++i)ans = (ans + dp2[i]) % MOD;
    cout << ans << endl;
    ;
}
05-11 14:04