OpenCV中实现图像翻转的函数flip,公式为:
目前fbc_cv库中也实现了flip函数,支持多通道,uchar和float两种数据类型,经测试,与OpenCV3.1结果完全一致。
实现代码flip.hpp:
// fbc_cv is free software and uses the same licence as OpenCV // Email: [email protected] #ifndef FBC_CV_FLIP_HPP_ #define FBC_CV_FLIP_HPP_ /* reference: include/opencv2/core.hpp modules/core/src/copy.cpp */ #include <typeinfo> #include "core/mat.hpp" namespace fbc { template<typename _Tp, int chs> static int flipHoriz(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst); template<typename _Tp, int chs> static int flipVert(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst); // Flips a 2D array around vertical, horizontal, or both axes // flipCode: 0 means flipping around the x - axis and positive value means flipping around y - axis. // Negative value means flipping around both axes // support type: uchar/float, multi-channels template <typename _Tp, int chs> int flip(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst, int flipCode) { FBC_Assert(typeid(uchar).name() == typeid(_Tp).name() || typeid(float).name() == typeid(_Tp).name()); // uchar || float if (dst.empty()) { dst = Mat_<_Tp, chs>(src.rows, src.cols); } else { FBC_Assert(src.rows == dst.rows && src.cols == dst.cols); } Size size = src.size(); if (flipCode < 0) { if (size.width == 1) flipCode = 0; if (size.height == 1) flipCode = 1; } if ((size.width == 1 && flipCode > 0) || (size.height == 1 && flipCode == 0) || (size.height == 1 && size.width == 1 && flipCode < 0)) { src.copyTo(dst); return 0; } if (flipCode <= 0) flipVert(src, dst); else flipHoriz(src, dst); if (flipCode < 0) flipHoriz(dst, dst); return 0; } template<typename _Tp, int chs> static int flipHoriz(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst) { Size size = src.size(); size_t esz = sizeof(_Tp) * chs; int i, j, limit = (int)(((size.width + 1) / 2) *esz ); AutoBuffer<int> _tab(size.width * esz); int* tab = _tab; size_t sstep = src.step; size_t dstep = dst.step; const uchar* src_ = src.ptr(); uchar* dst_ = dst.ptr(); for (i = 0; i < size.width; i++) { for (size_t k = 0; k < esz; k++) { tab[i*esz + k] = (int)((size.width - i - 1) * esz + k); } } for (; size.height--; src_ += sstep, dst_ += dstep) { for (i = 0; i < limit; i++) { j = tab[i]; uchar t0 = src_[i], t1 = src_[j]; dst_[i] = t1; dst_[j] = t0; } } return 0; } template<typename _Tp, int chs> static int flipVert(const Mat_<_Tp, chs>& src, Mat_<_Tp, chs>& dst) { const uchar* src0 = src.ptr(); uchar* dst0 = dst.ptr(); Size size = src.size(); size_t sstep = src.step; size_t dstep = dst.step; size_t esz = sizeof(_Tp) * chs; const uchar* src1 = src0 + (size.height - 1)*sstep; uchar* dst1 = dst0 + (size.height - 1)*dstep; size.width *= (int)esz; for (int y = 0; y < (size.height + 1) / 2; y++, src0 += sstep, src1 -= sstep, dst0 += dstep, dst1 -= dstep) { int i = 0; if (((size_t)src0 | (size_t)dst0 | (size_t)src1 | (size_t)dst1) % sizeof(int) == 0) { for (; i <= size.width - 16; i += 16) { int t0 = ((int*)(src0 + i))[0]; int t1 = ((int*)(src1 + i))[0]; ((int*)(dst0 + i))[0] = t1; ((int*)(dst1 + i))[0] = t0; t0 = ((int*)(src0 + i))[1]; t1 = ((int*)(src1 + i))[1]; ((int*)(dst0 + i))[1] = t1; ((int*)(dst1 + i))[1] = t0; t0 = ((int*)(src0 + i))[2]; t1 = ((int*)(src1 + i))[2]; ((int*)(dst0 + i))[2] = t1; ((int*)(dst1 + i))[2] = t0; t0 = ((int*)(src0 + i))[3]; t1 = ((int*)(src1 + i))[3]; ((int*)(dst0 + i))[3] = t1; ((int*)(dst1 + i))[3] = t0; } for (; i <= size.width - 4; i += 4) { int t0 = ((int*)(src0 + i))[0]; int t1 = ((int*)(src1 + i))[0]; ((int*)(dst0 + i))[0] = t1; ((int*)(dst1 + i))[0] = t0; } } for (; i < size.width; i++) { uchar t0 = src0[i]; uchar t1 = src1[i]; dst0[i] = t1; dst1[i] = t0; } } return 0; } } // namespace fbc #endif // FBC_CV_FLIP_HPP_
测试代码test_flip.cpp:
#include "test_flip.hpp" #include <assert.h> #include <iostream> #include <string> #include <flip.hpp> #include <opencv2/opencv.hpp> int test_flip_uchar() { cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/1.jpg", 1); if (!matSrc.data) { std::cout << "read image fail" << std::endl; return -1; } int width = matSrc.cols; int height = matSrc.rows; int flipCode[3] {-1, 0, 1}; // both axes, x axis, y axis for (int i = 0; i < 3; i++) { fbc::Mat_<uchar, 3> mat1(height, width, matSrc.data); fbc::Mat_<uchar, 3> mat2(height, width); fbc::flip(mat1, mat2, flipCode[i]); cv::Mat mat1_(height, width, CV_8UC3, matSrc.data); cv::Mat mat2_; cv::flip(mat1_, mat2_, flipCode[i]); assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step); for (int y = 0; y < mat2.rows; y++) { const fbc::uchar* p1 = mat2.ptr(y); const uchar* p2 = mat2_.ptr(y); for (int x = 0; x < mat2.step; x++) { assert(p1[x] == p2[x]); } } std::string name = std::to_string(i); std::string file_path = "E:/GitCode/OpenCV_Test/test_images/"; std::string name_fbc = file_path + "flip_fbc_" + name + ".jpg"; std::string name_cv = file_path + "flip_cv_" + name + ".jpg"; cv::Mat matSave(height, width, CV_8UC3, mat2.data); cv::imwrite(name_fbc, matSave); cv::imwrite(name_cv, mat2_); } return 0; } int test_flip_float() { cv::Mat matSrc = cv::imread("E:/GitCode/OpenCV_Test/test_images/1.jpg", 1); if (!matSrc.data) { std::cout << "read image fail" << std::endl; return -1; } cv::cvtColor(matSrc, matSrc, CV_BGR2GRAY); matSrc.convertTo(matSrc, CV_32FC1); int width = matSrc.cols; int height = matSrc.rows; int flipCode[3] {-1, 0, 1}; // both axes, x axis, y axis for (int i = 0; i < 3; i++) { fbc::Mat_<float, 1> mat1(height, width, matSrc.data); fbc::Mat_<float, 1> mat2(height, width); fbc::flip(mat1, mat2, flipCode[i]); cv::Mat mat1_(height, width, CV_32FC1, matSrc.data); cv::Mat mat2_; cv::flip(mat1_, mat2_, flipCode[i]); assert(mat2.rows == mat2_.rows && mat2.cols == mat2_.cols && mat2.step == mat2_.step); for (int y = 0; y < mat2.rows; y++) { const fbc::uchar* p1 = mat2.ptr(y); const uchar* p2 = mat2_.ptr(y); for (int x = 0; x < mat2.step; x++) { assert(p1[x] == p2[x]); } } } return 0; }