最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛。百度声称PaddlePaddle是一个“易学、易用”的开源深度学习框架,然而网上的资料少之又少。虽然百度很用心地提供了许多文档,而且还是中英双语具备,但是最关键的是报错了很难在网上找到相应的解决办法。为了明年备战百度的比赛,便开始学习以下PaddlePaddle。
1、安装
PaddlePaddle同样支持CUDA加速运算,但是如果没有NVIDIA的显卡,那就还是装CPU版本。
CPU版本安装:pip install paddlepaddle
GPU版本根据所安装的CUDA版本以及cuDNN版本有所不同:
CUDA9 + cuDNN7.0:pip install paddlepaddle-gpu
CUDA8 + cuDNN7.0 : pip install paddlepaddle-gpu==0.14.0.post87
CUDA8 + cuDNN5.0 : pip install paddlepaddle-gpu==0.14.0.post85
2、手写数字识别
其实,Paddle的GitHub提供了这个例程。但是,个人感觉这个例程部分直接调用PaddlePaddle内部类使得读者阅读起来十分困难。特别是数据输入(Feed)中的reader,如果直接看程序,它直接一个函数就完成了图像输入,完全搞不懂它是如何操作。这里也就重点将这里,个人感觉这是和Tensorflow较大的区别。
2.1、网络构建
程序中提供了三种网络模型,代码很明显,这里应该不用太多说,直接贴出来了。需要注意的是,PaddlePaddle将图像的通道数放在最前面,即为[C H W],区别于[H W C]。
(1)、单层全连接层+softmax
#a full-connect-layer network using softmax as activation function
def softmax_regression():
img = fluid.layers.data(name='img',shape=[1,28,28],dtype='float32')
predict = fluid.layers.fc(input=img,size=10,act='softmax')
return predict
(2)、多层全连接层+softmax
#3 full-connect-layers network using softmax as activation function
def multilayer_perceptron():
img = fluid.layers.data(name='img',shape=[1,28,28],dtype='float32')
hidden = fluid.layers.fc(input = img,size=128,act='softmax')
hidden = fluid.layers.fc(input = hidden,size=64,act='softmax')
prediction = fluid.layers.fc(input = hidden,size=10,act='softmax')
return prediction
(3)、卷积神经网络
#traditional converlutional neural network
def cnn():
img = fluid.layers.data(name='img',shape=[1, 28, 28], dtype ='float32')
# first conv pool
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input = img,
filter_size = 5,
num_filters = 20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
# second conv pool
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
# output layer with softmax activation function. size = 10 since there are only 10 possible digits.
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return prediction
2.2、构建损失函数
PaddlePaddle的损失函数的构建基本上与tensorflow没有太大的区别。但是需要指出的是:(1)在tensorflow中交叉熵的求解函数是使用[0 0 0 ... 1 ...]等长向量求解。但是在PaddlePaddle中,交叉熵是直接与一个整数求解;(2)标签(lable)的输入数据类型使用的是int64,尽管reader生成器返回的是int类型。笔者尝试将其改为int32类型,但是会出错。另外在其他实践过程中使用int32也是有相应的错误。
def train_program():
#if using dtype='int64', it reports errors!
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Here we can build the prediction network in different ways. Please
predict = cnn()
#predict = softmax_regression()
#predict = multilayer_perssion()
# Calculate the cost from the prediction and label.
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
return [avg_cost, acc]
PaddlePaddle使用Trainer进行训练,只需构建训练函数train_program作为Trainer参数(这个下面个再详细讲解)。这里要说一下,函数返回一个向量[arg_cost, acc],其中第一个元素作为损失函数,而后面几个元素则是可选的,用于在迭代过程中print出来。所以,返回arg_cost是必要的,其他是可选的。特别说明:不要作死将一个常量放在里面,也就是里面的元素必须是会随着训练而变化,如果作死“acc=1”,则在训练中会报错。
2.3、训练
PaddlePaddle使用fulid.Trainer来创建训练器。这里则需要配备好训练器的train_program(损失函数)、place(是否使用GPU)以及optimizer_program(优化器)。然后调用train函数来进行训练。详细可见下面程序:
def optimizer_program():
return fluid.optimizer.Adam(learning_rate=0.001)
if __name__ == "__main__":
print("run minst train\n")
minst_prefix = '/home/dzqiu/DataSet/minst/'
train_image_path = minst_prefix + 'train-images-idx3-ubyte.gz'
train_label_path = minst_prefix + 'train-labels-idx1-ubyte.gz'
test_image_path = minst_prefix + 't10k-images-idx3-ubyte.gz'
test_label_path = minst_prefix + 't10k-labels-idx1-ubyte.gz'
#reader_creator在将在下面讲述
train_reader = paddle.batch(paddle.reader.shuffle(#shuffle用于打乱buffer的循序
reader_creator(train_image_path,train_label_path,buffer_size=100),
buf_size=500),
batch_size=64)
test_reader = paddle.batch(
reader_creator(test_image_path,test_label_path,buffer_size=100),
batch_size=64) #测试集就不用打乱了 #if use GPU, use 'export FLAGS_fraction_of_gpu_memory_to_use=0' at first
use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer(train_func=train_program,
place=place,
optimizer_func=optimizer_program) params_dirname = "recognize_digits_network.inference.model"
lists = []
#
def event_handler(event):
if isinstance(event,fluid.EndStepEvent):#每步触发事件
if event.step % 100 == 0:
print("Pass %d, Epoch %d, Cost %f, Acc %f"\
%(event.step, event.epoch,
event.metrics[0],#train_program返回的第一个参数arg_cost
event.metrics[1]))#train_program返回的第二个参数acc
if isinstance(event,fluid.EndEpochEvent):#每次迭代触发事件
trainer.save_params(params_dirname)
#使用test的时候,返回值就是train_program的返回,所以赋值需要对应
avg_cost, acc = trainer.test(reader=test_reader,
feed_order=['img','label'])
print("Test with Epoch %d, avg_cost: %s, acc: %s"
%(event.epoch, avg_cost, acc))
lists.append((event.epoch, avg_cost, acc)) # Train the model now
trainer.train(num_epochs=5,event_handler=event_handler,
reader=train_reader,feed_order=['img', 'label']) # find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (float(best[2]) * 100)
2.4、训练数据的读取 Reader
PaddlePaddle的训练数据读取仅用一个paddle.dataset.mnist.train()解决,封装起来难以理解其操作,更不能看出如何读取自己的训练集。这里,我将这个段函数从源码中挖出来简化为reader_creator,实现对minst数据集的读取,首先让我们看看minst数据集的格式:
训练集中,标签集前8个字节是magic和数目,后面每个字节代表数字0-9的标签;图像集中前16字节是一些数据集信息,包括magic、图像数目、行数和列数,后面每个字节代表每个像素点,也就是说我们连续取出28*28个字节安顺序就可以组成28*28的图片。弄清楚文件如何读取,那么就可以编写reader:
def reader_creator(image_filename,label_filename,buffer_size):
def reader():
#调用命令读取文件,Linux下使用zcat
if platform.system()=='Linux':
zcat_cmd = 'zcat'
elif paltform.system()=='Windows':
zcat_cmd = 'gzcat'
else:
raise NotImplementedError("This program is suported on Windows or Linux,\
but your platform is" + platform.system()) #create a subprocess to read the images
sub_img = subprocess.Popen([zcat_cmd, image_filename], stdout = subprocess.PIPE)
sub_img.stdout.read(16) #skip some magic bytes 这里我们已经知道,所以我们不在需要前16字节
#create a subprocess to read the labels
sub_lab = subprocess.Popen([zcat_cmd, label_filename], stdout = subprocess.PIPE)
sub_lab.stdout.read(8) #skip some magic bytes 同理 try:
while True: #前面使用try,故若再读取过程中遇到结束则会退出
#label is a pixel repersented by a unsigned byte,so just read a byte
labels = numpy.fromfile(
sub_lab.stdout,'ubyte',count=buffer_size).astype("int") if labels.size != buffer_size:
break
#read 28*28 byte as array,and then resize it
images = numpy.fromfile(
sub_img.stdout,'ubyte',
count=buffer_size * 28 * 28)
.reshape(buffer_size, 28, 28).astype("float32")
#mapping each pixel into (-1,1)
images = images / 255.0 * 2.0 - 1.0;
for i in xrange(buffer_size):
yield images[i,:],int(labels[i]) #将图像与标签抛出,循序与feed_order对应!
finally:
try:
#terminate the reader subprocess
sub_img.terminate()
except:
pass
try:
#terminate the reader subprocess
sub_lable.terminate()
except:
pass
return reader
2.5、运行结果
训练集中有60000张图片,buffer_size为100,batch_size为64,所以应该Pass了900多次。
Pass , Batch , Cost 4.250958, Acc 0.062500
Pass , Batch , Cost 0.249865, Acc 0.953125
Pass , Batch , Cost 0.281933, Acc 0.906250
Pass , Batch , Cost 0.147851, Acc 0.953125
Pass , Batch , Cost 0.144059, Acc 0.968750
Pass , Batch , Cost 0.082035, Acc 0.953125
Pass , Batch , Cost 0.105593, Acc 0.984375
Pass , Batch , Cost 0.148170, Acc 0.968750
Pass , Batch , Cost 0.182150, Acc 0.937500
Pass , Batch , Cost 0.066323, Acc 0.968750
Test with Epoch , avg_cost: 0.07329441363440427, acc: 0.9762620192307693
Pass , Batch , Cost 0.157396, Acc 0.953125
Pass , Batch , Cost 0.050120, Acc 0.968750
Pass , Batch , Cost 0.086324, Acc 0.984375
Pass , Batch , Cost 0.002137, Acc 1.000000
Pass , Batch , Cost 0.173876, Acc 0.984375
Pass , Batch , Cost 0.059772, Acc 0.968750
Pass , Batch , Cost 0.035788, Acc 0.984375
Pass , Batch , Cost 0.008351, Acc 1.000000
Pass , Batch , Cost 0.022678, Acc 0.984375
Pass , Batch , Cost 0.021835, Acc 1.000000
Test with Epoch , avg_cost: 0.06836433922317389, acc: 0.9774639423076923
Pass , Batch , Cost 0.214221, Acc 0.937500
Pass , Batch , Cost 0.212448, Acc 0.953125
Pass , Batch , Cost 0.007266, Acc 1.000000
Pass , Batch , Cost 0.015241, Acc 1.000000
Pass , Batch , Cost 0.061948, Acc 0.984375
Pass , Batch , Cost 0.043950, Acc 0.984375
Pass , Batch , Cost 0.018946, Acc 0.984375
Pass , Batch , Cost 0.015527, Acc 0.984375
Pass , Batch , Cost 0.035185, Acc 0.984375
Pass , Batch , Cost 0.004890, Acc 1.000000
Test with Epoch , avg_cost: 0.05774364945361809, acc: 0.9822716346153846
Pass , Batch , Cost 0.031849, Acc 0.984375
Pass , Batch , Cost 0.059525, Acc 0.953125
Pass , Batch , Cost 0.022106, Acc 0.984375
Pass , Batch , Cost 0.006763, Acc 1.000000
Pass , Batch , Cost 0.056089, Acc 0.984375
Pass , Batch , Cost 0.018876, Acc 1.000000
Pass , Batch , Cost 0.010325, Acc 1.000000
Pass , Batch , Cost 0.010989, Acc 1.000000
Pass , Batch , Cost 0.026476, Acc 0.984375
Pass , Batch , Cost 0.007792, Acc 1.000000
Test with Epoch , avg_cost: 0.05476908334449968, acc: 0.9830729166666666
Pass , Batch , Cost 0.061547, Acc 0.984375
Pass , Batch , Cost 0.002315, Acc 1.000000
Pass , Batch , Cost 0.009715, Acc 1.000000
Pass , Batch , Cost 0.024202, Acc 0.984375
Pass , Batch , Cost 0.150663, Acc 0.968750
Pass , Batch , Cost 0.082586, Acc 0.984375
Pass , Batch , Cost 0.012232, Acc 1.000000
Pass , Batch , Cost 0.055258, Acc 0.984375
Pass , Batch , Cost 0.016068, Acc 1.000000
Pass , Batch , Cost 0.004945, Acc 1.000000
Test with Epoch , avg_cost: 0.041706092633705505, acc: 0.9865785256410257
Best pass is , testing Avgcost is 0.041706092633705505
The classification accuracy is 98.66%
2.6 测试接口
PaddlePaddle提供接口函数,调用接口即可。特别的是,图像需要转化为[N C H W]的张量,如果是一张图像,这里N当然是1,因为是灰度图C也便是1。具体看下面代码:
def load_image(file):
im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS)
im = numpy.array(im).reshape(1, 1, 28, 28).astype(np.float32) #[N C H W] 这里多了一个N
im = im / 255.0 * 2.0 - 1.0
return im
cur_dir = os.path.dirname(os.path.realpath(__file__))
img = load_image(cur_dir + '/infer_3.png')
inferencer = fluid.Inferencer(
# infer_func=softmax_regression, # uncomment for softmax regression
# infer_func=multilayer_perceptron, # uncomment for MLP
infer_func=cnn, # uncomment for LeNet5
param_path=params_dirname,
place=place)
results = inferencer.infer({'img': img})
lab = numpy.argsort(results) # probs and lab are the results of one batch data
print "Label of infer_3.png is: %d" % lab[0][0][-1]
测试结果如下:
Label of infer_3.png is:
3、结语
PaddlePaddle与tensorflow还是有一定的区别,而且除了错误很难搜到解决方法,笔者会另外开一篇博客整理总结PaddlePaddle遇到的各种问题,这个对于例程的讲解也将会继续下去,坚持每周三更新,快开学了,还加把劲。
源码地址:Github