SoftMax回归模型,是logistic回归在多分类问题的推广,即现在logistic回归数据中的标签y不止有0-1两个值,而是可以取k个值,softmax回归对诸如MNIST手写识别库等分类很有用,该问题有0-9 这10个数字,softmax是一种supervised learning方法。
在logistic中,训练集由 个已标记的样本构成: ,其中输入特征(特征向量 的维度为 ,其中 对应截距项 ), logistic 回归是针对二分类问题的,因此类标记 。假设函数(hypothesis function) 如下:
损失函数为负log损失函数:
找到使得损失函数最小时的模型参数 ,带入假设函数即可求解模型。
在softmax回归中,对于训练集 中的类标 可以取 个不同的值(而不是 2 个),即有 (注意不是由0开始), 在MNIST中有K=10个类别。
在softmax回归中,对于输入x,要计算x分别属于每个类别j的概率,即求得x分别属于每一类的概率,因此假设函数要设定为输出一个k维向量,每个维度代表x被分为每个类别的概率,假设函数 形式如下:
请注意 这一项对概率分布进行归一化,使得所有概率之和为 1 。当类别数 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当 时,softmax 回归的假设函数为:,对该式进行化简得到:
另 来表示,我们就会发现 softmax 回归器预测其中一个类别的概率为 ,另一个类别概率的为 ,这与 logistic回归是一致的。
其中 是模型的参数。把参数 表示为矩阵形式有, 是一个 的矩阵,该矩阵是将 按行罗列起来得到的:
有个假设函数(Hypothesis Function),下面来看代价函数,根据代价函数求解出最优参数值带入假设函数即可求得最终的模型,先引入函数,对于该函数有:
值为真的表达式 值为假的表达式 。
举例来说,表达式 的值为1 ,的值为 0 。
则softmax的损失函数为:
当k=2时,即有logistic的形式,下边是推倒:
另上式中的便得到了logistic回归的损失函数。
可以看到,softmax与logistic的损失函数只是k的取值不同而已,且在softmax中将类别x归为类别j的概率为:
.
需要注意的一个问题是softmax回归中的模型参数化问题,即softmax的参数集是“冗余的”。
假设从参数向量 中减去了向量 ,这时,每一个 都变成了 ()。此时假设函数变成了以下的式子:
也就是说,从 中减去 完全不影响假设函数的预测结果,这就说明 Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数 ,也就是说如果参数集合 是代价函数 的极小值点,那么 同样也是它的极小值点,其中 可以是任意向量,到底是什么造成的呢?从宏观上可以这么理解,因为此时的损失函数不是严格非凸的,也就是说在局部最小值点附近是一个”平坦”的,所以在这个参数附近的值都是一样的了。平坦假设函数空间的Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题。因此使 最小化的解不是唯一的。但此时 仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。
还有一个值得注意的地方是:当 时,我们总是可以将 替换为(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量 (或者其他 中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的 个参数 (其中 ),我们可以令 ,只优化剩余的 个参数,这样算法依然能够正常工作。比如logistic就是这样的。
在实际应用中,为了使算法看起来更直观更清楚,往往保留所有参数 ,而不任意地将某一参数设置为 0。但此时需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。
目前对损失函数 的最小化还没有封闭解(closed-form),因此使用迭代的方法求解,如(Gradient Descent或者L-BFGS),经过求导,得到的梯度公式:
本身是一个向量,它的第 个元素 是 对 的第 个分量的偏导数。在梯度下降法的标准实现中,每一次迭代需要进行如下更新: ()。( 为方向,a代表在这个方向的步长)
由于参数数量的庞大,所以可能需要权重衰减项来防止过拟合,一般的算法中都会有该项。添加一个权重衰减项 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
有了这个权重衰减项以后 (),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。
为了使用优化算法,我们需要求得这个新函数 的导数,如下:
通过最小化 ,我们就能实现一个可用的 softmax 回归模型。
最后一个问题在logistic的文章里提到过,关于分类器选择的问题,是使用logistic建立k个分类器呢,还是直接使用softmax回归,这取决于数据之间是否是互斥的,k-logistic算法可以解决互斥问题,而softmax不可以解决,比如将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。 (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片
考虑到处理的问题的不同,在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。最后补一张k-logistic的图片: