题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869

六度分离

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5171    Accepted Submission(s):
2089

Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world
phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six
degrees of
separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

 
Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
 
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
 
Sample Input
8 7
0 1
1 2
2 3
3 4
4 5
5 6
6 7
8 8
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 0
 
Sample Output
Yes
Yes
 
Author
linle
 
很久就写过的题目,今天在专题中看到,又写了一次,发现比以前写的好些了,代码精简了好多,(●ˇ∀ˇ●)
题目大意:任意两个人之间最多只有六个人,以这个为条件,判断是否来连通,数据量不大可以所以选用floyd。
 
详见代码。
 #include <iostream>
#include <cstdio> using namespace std; const int INF=; int Map[][],n; int settle()
{
for (int i=; i<n; i++)
{
//node[i]=INF;
for (int j=; j<n; j++)
{
Map[i][j]=INF;
}
}
} int floyd()
{
for (int k=; k<n; k++)
{
for (int i=; i<n; i++)
{
for (int j=; j<n; j++)
{
if (Map[i][j]>Map[i][k]+Map[k][j])
Map[i][j]=Map[i][k]+Map[k][j];
}
}
} } int main()
{
int m;
while (~scanf("%d%d",&n,&m))
{
settle();
while (m--)
{
int a,b;
scanf("%d%d",&a,&b);
Map[a][b]=Map[b][a]=;
}
floyd();
int MAx=;
for (int i=; i<n; i++)
{
for (int j=; j<n; j++)
{
if (MAx<Map[i][j])
MAx=Map[i][j];
}
}
if (MAx>)
printf ("No\n");
else
printf ("Yes\n");
}
return ;
}
 
05-08 08:28