不是BST,那么搜索两节点的LCA就复杂点了,由于节点是无序的。

以下是两种方法,都写进一个类里面了。

当然须要反复搜索的时候。能够使用多种方法加速搜索。

#include <iostream>
#include <vector>
using namespace std; class LCANormalTree
{
struct Node
{
int key;
Node *left, *right;
Node(int k) : key(k) , left(NULL), right(NULL) {}
}; //method 1:
bool findPath(Node *root, vector<Node *> &path, int k)
{
if (!root) return false;
path.push_back(root);
if (root->key == k) return true;
if (findPath(root->left, path, k) || findPath(root->right, path, k))
return true; path.pop_back();
return false;
} Node *findLCA(Node *root, int n1, int n2)
{
vector<Node *> pathN1, pathN2;
if (!findPath(root, pathN1, n1) || !findPath(root, pathN2, n2))
return NULL; int i = 0;
for (; i < (int) pathN1.size() && pathN1[i] == pathN2[i]; i++);
return pathN1[i-1];
} //Method 2:
Node *findLCAUtil(Node *root, int n1, int n2, bool &v1, bool &v2)
{
if (!root) return NULL;
if (root->key == n1)
{
v1 = true;
return root;
}
if (root->key == n2)
{
v2 = true;
return root;
}
Node *left = findLCAUtil(root->left, n1, n2, v1, v2);
Node *right = findLCAUtil(root->right, n1, n2, v1, v2); if (left && right) return root;
return left? left:right;
} bool find(Node *root, int k)
{
if (!root) return false;
if (root->key == k || find(root->left, k) || find(root->right, k))
return true;
return false;
} Node *findLCA_2(Node *root, int n1, int n2)
{
bool v1 = false, v2 = false;
Node *lca = findLCAUtil(root, n1, n2, v1, v2);
//当两者在不同一边的时候v1&&v1,当一个为另外一个的单亲节点的时候,那么就出现后面两种情况了。
if (v1 && v2 || v1 && find(lca, n2) || v2 && find(lca, n1))
return lca;
return NULL;
} Node *root;
public:
LCANormalTree()
{
cout<<"Algorithm 1 run\n";
run_1();
cout<<"\nAlgorithm 2 run\n";
run_2();
} void run_1()
{
root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
root->right->right = new Node(7);
Node *t = findLCA(root, 4, 5);
cout << "LCA(4, 5) = " << (t? t->key : -1);
t = findLCA(root, 4, 6);
cout << "\nLCA(4, 6) = " << (t? t->key : -1);
t = findLCA(root, 3, 4);
cout << "\nLCA(3, 4) = " << (t? t->key : -1);
t = findLCA(root, 2, 4);
cout << "\nLCA(2, 4) = " << (t? t->key : -1);
cout << endl; deleteTree(root);
} void run_2()
{
root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->left = new Node(6);
root->right->right = new Node(7);
Node *lca = findLCA(root, 4, 5);
if (lca != NULL)
cout << "LCA(4, 5) = " << lca->key;
else
cout << "Keys are not present "; lca = findLCA(root, 4, 10);
if (lca != NULL)
cout << "\nLCA(4, 10) = " << lca->key;
else
cout << "\nKeys are not present "; cout<<endl;
deleteTree(root);
} ~LCANormalTree()
{
if (root) deleteTree(root);
} void deleteTree(Node *&r)
{//注意不能是*r。要*&r,由于须要改动r为NULL,防止多次释放
if (r)
{
deleteTree(r->left);
deleteTree(r->right);
delete r; r = NULL;
}
}
};

Geeks 一般二叉树的LCA-LMLPHP

05-15 20:24