之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析:

线性判别

最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方法来对新样本进行分类,主要步骤如下:

  Step1:求线性判别函数;

  Step2:计算判别界值;

  Step3:建立判别标准(这里与模糊分类中的隶属度有些相似,即离哪一类的投影中心最近,就将样本判别为哪一类)

下面分别利用Python,R,基于著名的花卉分类数据集iris进行演示:

Python

我们利用sklearn包中封装的LinearDiscriminantAnalysis对iris构建线性判别模型,因为LDA实际上是将高维数据尽可能分开的投影到一条直线上,因此LDA也可以对特定数据进行降维转换:

'''Fisher线性判别分析'''
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from matplotlib.pyplot import style
from sklearn.model_selection import train_test_split style.use('ggplot') iris = datasets.load_iris() X = iris.data
y = iris.target '''展示LDA的降维功能'''
target_names = iris.target_names '''设置压缩到1维'''
lda = LinearDiscriminantAnalysis(n_components=1) '''利用线性判别函数将四维的样本数据压缩到一条直线上'''
X_r2 = lda.fit(X,y).transform(X)
X_Zero = np.zeros(X_r2.shape)
'''绘制降维效果图'''
for c,i,target_names in zip('ryb',[0,1,2],target_names):
plt.scatter(X_r2[y == i],X_Zero[y == i],c=c,label=target_names,s=5) plt.legend()
plt.grid()

降维后的效果图如下:

(数据科学学习手札17)线性判别分析的原理简介&Python与R实现-LMLPHP

下面正式对iris数据集进行LDA分类,这里用到一个新的方法,是sklearn.model_selection.train_test_split,它的作用是根据设置的训练集与测试集的比例进行随机分割,我们利用从样本集中分割的7成数据作为训练集,3成数据进行测试,过程及结果如下:

'''利用sklearn自带的样本集划分方法进行分类,这里选择训练集测试集73开'''
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
'''搭建LDA模型'''
lda = LinearDiscriminantAnalysis(n_components=1)
'''利用分割好的训练集进行模型训练并对测试集进行预测'''
ld = lda.fit(X_train,y_train).predict(X_test)
'''比较预测结果与真实分类结果'''
print(np.array([ld,y_test]))
'''打印正确率'''
print('正确率:',str(lda.score(X_test,y_test)))

结果如下:

(数据科学学习手札17)线性判别分析的原理简介&Python与R实现-LMLPHP

可以看出,在iris上取得了非常高的准确率。

R

在R中做LDA需要用到MASS包中的lda(formula~feature1+feature2+...+featuren,data=df),其中formula表示数据集中表示分类标注的列,右边的各种feature表示将要使用到的分类特征值,也即是构建线性判别函数要用到的基础变量,data指保存全部数据的数据框,具体过程如下:

> #Fisher线性判别
> rm(list=ls())
> library(MASS)
> data(iris)
> data <- iris
> data$Species = as.character(data$Species)
> #创造类别变量
> data$type[data$Species == 'setosa'] = 1
> data$type[data$Species == 'versicolor'] = 2
> data$type[data$Species == 'virginica'] = 3
> #利用简单随机抽样将样本集划分为训练集与验证集
> sam <- sample(1:length(data[,1]),105)
> train <- data[sam,]
> test <- data[-sam,]
> #根据样本数据创建线性判别分析模型
> ld <- lda(type~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=train)
> #将样本集作为验证集求分类结果
> Z <- predict(ld)
> #保存预测类别
> newType <- Z$class
> #与真实分类结果进行比较
> cbind(train$type,Z$x,newType)
LD1 LD2 newType
74 2 -2.0419740 -1.16551052 2
93 2 -1.2286978 -1.34868982 2
124 3 -4.2056288 -0.39378496 3
43 1 7.0499296 -0.38479505 1
141 3 -6.3297144 1.43240686 3
112 3 -5.2009805 -0.39665336 3
75 2 -1.2076317 -0.53028083 2
83 2 -0.8607055 -1.04255122 2
128 3 -3.7958024 0.38283281 3
134 3 -3.5521695 -0.79338125 2
84 2 -4.1930475 -0.86304028 3
80 2 0.2455854 -1.48598565 2
16 1 8.9754828 2.99336222 1
35 1 6.7862663 -0.74053169 1
64 2 -2.4399568 -0.53150309 2
79 2 -2.4024680 -0.24830622 2
142 3 -4.9647448 1.48158101 3
54 2 -2.2217845 -1.93554530 2
14 1 7.3092968 -0.99420385 1
119 3 -8.8253015 -0.67042900 3
71 2 -3.3701925 0.94839271 3
44 1 6.2098650 0.99672773 1
29 1 7.6841973 0.08156876 1
62 2 -1.7099434 0.15332464 2
59 2 -1.6648086 -0.67372500 2
77 2 -2.3932456 -0.84052244 2
27 1 6.6078477 0.36272030 1
101 3 -7.2690741 1.94879260 3
91 2 -2.1739793 -1.53761667 2
40 1 7.4330661 0.03443993 1
103 3 -5.9833783 0.46642759 3
121 3 -5.9399677 1.45493705 3
51 2 -1.3784535 0.24058778 2
88 2 -2.5153892 -2.12899905 2
6 1 7.5334551 1.60652494 1
148 3 -4.7085798 0.61397476 3
76 2 -1.3919721 -0.13234144 2
10 1 7.0733099 -0.92823629 1
7 1 7.0416936 0.27174257 1
104 3 -5.1966351 -0.20937105 3
24 1 6.0120553 0.24387476 1
137 3 -6.0383747 2.20984770 3
61 2 -1.2257443 -3.03469429 2
41 1 7.6466593 0.57623503 1
26 1 6.4775174 -1.04708182 1
70 2 -1.0443574 -1.74662921 2
31 1 6.5351351 -0.78766052 1
85 2 -2.5818237 0.01276122 2
36 1 7.5972776 -0.33972390 1
4 1 6.6085362 -0.73929708 1
130 3 -4.2970292 -0.42496657 3
95 2 -1.8418994 -0.99664464 2
111 3 -4.1644831 1.17871159 3
117 3 -4.7101562 0.09594447 3
48 1 6.9765285 -0.43315849 1
106 3 -7.0303766 0.13158736 3
69 2 -3.5167119 -2.05931691 2
131 3 -5.9675456 -0.52249341 3
92 2 -2.0719645 -0.22536449 2
22 1 7.3872921 1.18564382 1
39 1 6.6977209 -0.90199151 1
125 3 -5.3082628 1.33894916 3
47 1 7.9455957 1.02129249 1
108 3 -5.9474167 -0.54626897 3
123 3 -7.2281863 -0.62126561 3
25 1 6.4877846 -0.15448692 1
96 2 -0.9672993 -0.40896608 2
149 3 -5.4267988 2.11763536 3
58 2 -0.1967945 -1.90480909 2
100 2 -1.4146638 -0.69091758 2
107 3 -4.3326495 -0.90276305 3
89 2 -1.1216984 -0.17330958 2
67 2 -2.4633370 0.01193815 2
45 1 6.7958450 1.25408059 1
138 3 -4.5932952 0.35495424 3
30 1 6.6519961 -0.52865075 1
17 1 8.3010066 1.79668640 1
9 1 6.3297286 -1.20813011 1
135 3 -4.6952607 -1.73516107 3
18 1 7.5140148 0.52828312 1
145 3 -6.4564371 2.08976755 3
68 2 -0.6703941 -1.51304115 2
12 1 7.0634482 -0.01186583 1
23 1 8.4484974 0.79139590 1
20 1 7.8504400 1.25653745 1
15 1 9.4800594 1.72576966 1
147 3 -5.0367690 -0.77081719 3
46 1 6.4557628 -0.76347342 1
60 2 -1.7902528 -0.66467281 2
19 1 7.8221244 1.15898751 1
144 3 -6.3829867 1.36026786 3
1 1 7.8010583 0.34057853 1
90 2 -1.8695758 -1.41834884 2
53 2 -2.2846205 0.07502495 2
115 3 -6.4317784 0.89801781 3
146 3 -5.4512238 1.17626549 3
78 2 -3.3451866 0.14511863 2
99 2 0.3864166 -1.31670824 2
118 3 -6.0412297 2.34012590 3
38 1 8.1457196 0.41229523 1
139 3 -3.6631579 0.43078471 3
105 3 -6.4339941 0.70414177 3
132 3 -4.7729922 2.10651473 3
110 3 -6.3994587 2.67334311 3
72 2 -0.9858025 -0.64502336 2
> #打印混淆矩阵
> (tab <- table(newType,train$type)) newType 1 2 3
1 35 0 0
2 0 33 1
3 0 2 34
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(train[,1]))
Accuracy: 0.9714286
> #将验证集代入训练好的模型中计算近似泛化误差
> T <-predict(ld,test)
> #与真实分类结果进行比较
> cbind(test$type,T$x,T$class)
LD1 LD2
2 1 6.8020498 -0.95158956 1
3 1 7.2276597 -0.38602966 1
5 1 7.9179194 0.59958829 1
8 1 7.3738228 0.03485147 1
11 1 8.1391093 0.80900002 1
13 1 7.0298500 -1.13888262 1
21 1 7.2270204 -0.06187541 1
28 1 7.6684138 0.29262662 1
32 1 7.0367090 0.40861452 1
33 1 9.0120836 1.65651141 1
34 1 9.2707624 2.14912000 1
37 1 8.2299196 0.38647275 1
42 1 5.2371900 -2.52488607 1
49 1 8.0798659 0.80941155 1
50 1 7.3896062 -0.17620640 1
52 2 -1.6371815 0.52584233 2
55 2 -2.4742435 -0.55650250 2
56 2 -2.1822152 -0.88107904 2
57 2 -2.1911397 0.87747596 2
63 2 -1.2405414 -2.75931501 2
65 2 -0.3383635 -0.19420599 2
66 2 -1.1566243 0.12584525 2
73 2 -3.6967069 -1.47409522 2
81 2 -1.0878173 -1.95727554 2
82 2 -0.6088858 -2.09743977 2
86 2 -1.8089897 1.23238953 2
87 2 -2.0193315 0.17092876 2
94 2 -0.3136555 -2.16381886 2
97 2 -1.4304473 -0.47985972 2
98 2 -1.3261184 -0.52945776 2
102 3 -5.1726649 -0.29910341 3
109 3 -6.0478550 -1.34049085 3
113 3 -5.3935569 0.65782366 3
114 3 -5.6792727 -0.58064337 3
116 3 -5.4686329 1.64715619 3
120 3 -4.5946379 -2.29619567 3
122 3 -5.0183151 0.24310322 3
126 3 -4.9026833 0.37255836 3
127 3 -3.8968800 -0.08723483 3
129 3 -6.1746269 0.09473298 3
133 3 -6.4616705 0.28243757 3
136 3 -6.5857811 0.74428684 3
140 3 -4.9663213 0.96355072 3
143 3 -5.1726649 -0.29910341 3
150 3 -4.2980648 0.28857515 3
> #打印混淆矩阵
> (tab <- table(T$class,test$type)) 1 2 3
1 15 0 0
2 0 15 0
3 0 0 15
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(test[,1]))
Accuracy: 1
> #Fisher线性判别
> rm(list=ls())
> library(MASS)
> data(iris)
> data <- iris
> data$Species = as.character(data$Species)
> #创造类别变量
> data$type[data$Species == 'setosa'] = 1
> data$type[data$Species == 'versicolor'] = 2
> data$type[data$Species == 'virginica'] = 3
> #利用简单随机抽样将样本集划分为训练集与验证集
> sam <- sample(1:length(data[,1]),105)
> train <- data[sam,]
> test <- data[-sam,]
> #根据样本数据创建线性判别分析模型
> ld <- lda(type~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=train)
> #将样本集作为验证集求分类结果
> Z <- predict(ld)
> #保存预测类别
> newType <- Z$class
> #与真实分类结果进行比较
> cbind(train$type,Z$x,newType)
LD1 LD2 newType
44 1 6.5356943 1.380095755 1
150 3 -5.0777607 0.353229454 3
48 1 7.2092979 -0.233679182 1
17 1 8.7810490 1.832128789 1
11 1 8.5106371 0.591364581 1
13 1 7.4261015 -0.949875862 1
82 2 -0.7168056 -1.805629506 2
19 1 8.2170070 0.870266056 1
123 3 -7.9020752 -1.233817765 3
23 1 8.7554448 0.980676590 1
59 2 -1.8788410 -0.915972039 2
70 2 -1.2367635 -1.516788339 2
146 3 -5.6852127 1.788579457 3
142 3 -5.0723482 2.082228707 3
115 3 -6.9597642 1.869494439 3
7 1 7.2188221 0.472577805 1
112 3 -5.6667730 -0.156736416 3
117 3 -5.4232144 -0.112017744 3
26 1 6.8888800 -0.860736454 1
111 3 -4.6405840 1.346460523 3
29 1 8.1491362 0.125965565 1
81 2 -1.2242456 -1.597693375 2
14 1 7.6286098 -0.598455540 1
110 3 -7.1444731 2.585994755 3
40 1 7.7798631 0.022078382 1
39 1 6.9782244 -0.504346286 1
68 2 -1.0104685 -1.671771426 2
20 1 8.0502422 1.117799195 1
31 1 6.7929797 -0.656064848 1
134 3 -4.1319678 -1.006493240 2
73 2 -4.0110318 -1.372974920 2
4 1 6.8227612 -0.537268125 1
108 3 -6.6972047 -1.217364668 3
54 2 -2.3695531 -1.376553027 2
148 3 -5.1575482 0.848139667 3
141 3 -6.8305530 1.864676411 3
109 3 -6.6173517 -1.422188092 3
50 1 7.7923809 -0.058826655 1
91 2 -2.7513769 -1.544578568 2
97 2 -1.8728790 -0.435815301 2
96 2 -1.4911207 -0.557876549 2
77 2 -2.5464899 -1.021564544 2
66 2 -1.2439344 0.003029162 2
145 3 -7.0771380 2.462076368 3
38 1 8.3218303 0.213545770 1
45 1 6.7744745 0.999164236 1
58 2 -0.3713519 -1.340382308 2
35 1 7.1622529 -0.552177665 1
36 1 8.1741719 -0.035844508 1
57 2 -2.7067243 0.719387605 2
27 1 6.9079284 0.551777520 1
132 3 -5.6031449 1.030132762 3
128 3 -4.3392145 0.561003821 3
87 2 -2.2635929 -0.006748767 2
88 2 -2.4886790 -1.851739918 2
118 3 -7.1004619 1.347087687 3
119 3 -9.4291409 -0.890616169 3
46 1 6.9234400 -0.316289540 1
33 1 9.0573501 1.063438766 1
10 1 7.4135836 -0.868970825 1
78 2 -3.6650096 0.105534552 2
32 1 7.6166932 0.640755164 1
139 3 -4.1962691 0.674830697 3
103 3 -6.5226603 0.373114540 3
43 1 7.2390794 -0.114882460 1
121 3 -6.4785762 1.623818440 3
15 1 10.1229028 1.482252025 1
125 3 -6.0718150 1.194903725 3
92 2 -2.5655637 -0.379597733 2
21 1 7.6071362 -0.210545218 1
116 3 -6.0199587 2.084095792 3
95 2 -2.2468978 -0.820309281 2
93 2 -1.3874483 -1.124059988 2
135 3 -5.6483660 -2.247095684 3
52 2 -1.9604386 0.420606745 2
37 1 8.8751646 0.414644969 1
127 3 -4.2307963 0.275427178 3
137 3 -6.8919261 2.468751536 3
98 2 -1.5631688 -0.569521563 2
72 2 -1.0384324 -0.432712540 2
80 2 0.2825956 -1.208391313 2
67 2 -3.1266046 0.070901690 2
120 3 -4.9979151 -2.051118149 3
114 3 -6.2027782 0.131952933 3
69 2 -3.4910411 -1.516772693 2
130 3 -4.8967334 -1.106964081 3
42 1 5.9270652 -1.555646363 1
64 2 -2.9521004 -0.683186676 2
86 2 -2.4035699 1.146743118 2
75 2 -1.3368410 -0.579461256 2
143 3 -5.8335378 0.090796722 3
140 3 -5.3380144 1.122071295 3
1 1 8.1663998 0.325667325 1
83 2 -1.0009115 -0.820471045 2
28 1 8.0234544 0.211840448 1
85 2 -3.3529324 0.080841383 2
89 2 -1.5995061 -0.127256512 2
18 1 7.9150690 0.642460485 1
147 3 -5.2724641 -0.214659306 3
105 3 -7.1968652 0.828583809 3
41 1 8.0580144 0.756287362 1
63 2 -1.1801689 -2.546513654 2
122 3 -5.6685504 0.829975549 3
107 3 -5.0735507 -0.234382628 3
47 1 8.0454637 0.692149004 1
> #打印混淆矩阵
> (tab <- table(newType,train$type)) newType 1 2 3
1 36 0 0
2 0 33 1
3 0 0 35
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(train[,1]))
Accuracy: 0.9904762> #将验证集代入训练好的模型中计算近似泛化误差
> T <-predict(ld,test)
> #与真实分类结果进行比较
> cbind(test$type,T$x,T$class)
LD1 LD2
2 1 7.2879346 -0.63805255 1
3 1 7.5785711 -0.12979200 1
5 1 8.1836634 0.52536908 1
6 1 7.7566121 1.39670067 1
8 1 7.6666992 0.02704823 1
9 1 6.5916877 -0.80793523 1
12 1 7.1842622 -0.07186911 1
16 1 9.2604596 2.57316476 1
22 1 7.6684840 1.23986044 1
24 1 6.3832248 0.56001189 1
25 1 6.4159345 -0.39844020 1
30 1 6.8102433 -0.45636309 1
34 1 9.5320477 1.66891133 1
49 1 8.3974733 0.59633443 1
51 2 -1.5423430 -0.14371955 2
53 2 -2.5494836 -0.23440252 2
55 2 -2.6250939 -0.47214778 2
56 2 -2.7716342 -0.95711830 2
60 2 -2.1825564 -0.15706564 2
61 2 -1.2921165 -2.34199387 2
62 2 -2.0187853 0.38256324 2
65 2 -0.4493874 0.22229672 2
71 2 -4.0485780 1.06926437 3
74 2 -2.5798663 -1.51150491 2
76 2 -1.4875258 -0.18673290 2
79 2 -2.8043766 -0.14370961 2
84 2 -4.8532177 -0.86952245 3
90 2 -2.1086982 -0.98708920 2
94 2 -0.3886155 -1.54008407 2
99 2 0.5024002 -0.51222584 2
100 2 -1.7471972 -0.52169018 2
101 3 -8.2981213 2.15538466 3
102 3 -5.8335378 0.09079672 3
104 3 -6.0360789 -0.40566699 3
106 3 -7.7496056 -0.41373390 3
113 3 -5.8377150 0.82345220 3
124 3 -4.5041691 -0.03313161 3
126 3 -5.6507584 -0.30162799 3
129 3 -6.8073348 0.34501073 3
131 3 -6.4535806 -0.88255921 3
133 3 -7.0586655 0.66180389 3
136 3 -6.8585571 0.75916772 3
138 3 -5.4059508 0.08768402 3
144 3 -7.1039586 1.41107423 3
149 3 -6.2415407 2.37464228 3
> #打印混淆矩阵
> (tab <- table(T$class,test$type)) 1 2 3
1 14 0 0
2 0 15 0
3 0 2 14
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(test[,1]))
Accuracy: 0.9555556

可以看出,和Python中的效果相差无几。

以上就是关于线性判别的基本内容,如有意见望提出。

05-07 15:51