大致题意: 求出一个矩阵中所有\(n*n\)正方形中极差的最小值。
另一种做法
听说这题可以用单调队列去做,但是我写了一个二维\(RMQ\)。
二维\(RMQ\)
\(RMQ\)相信大家都会的,而 二维\(RMQ\) 其实与普通\(RMQ\)是没什么区别的。
我们可以用\(Max_{i,j,k}\)来表示\((i,j)\sim(i+2^k,j+2^k)\)这个矩阵内的最大值,\(Min_{i,j,k}\)同理。
由于求的是一个正方形内的最大值与最小值,所以\((i,j)\sim(x,y)\)这个矩阵内的最大值就等于
\[max(Max_{i,j,Log},Max_{x-2^{Log}+1,j,Log},Max_{i,y-2^{Log}+1,Log},Max_{x-2^{Log}+1,y-2^{Log}+1,Log})
\]
\]
其中\(Log\)表示\(log_2(x-i)\)(\(=log_2(y-j)\)),最小值同理。
那么代码就很简单了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define N 1000
#define K 100
#define LogN 10
using namespace std;
int n,m,k,a[N+5][N+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(int x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_RMQ//二维RMQ
{
private:
//写define有利于代码简洁
#define Delta (X2-X1+1)
#define Log (Log2[Delta])
#define XX (X2-(1<<Log)+1)
#define YY (Y2-(1<<Log)+1)
int Log2[K+5],Max[N+5][N+5][LogN+5],Min[N+5][N+5][LogN+5];
public:
inline void Init()//初始化
{
register int i,j,l;
for(i=1;i<=n;++i) for(j=1;j<=m;++j) F.read(Max[i][j][0]),Min[i][j][0]=Max[i][j][0];
for(i=2;i<=k;++i) Log2[i]=Log2[i>>1]+1;
for(l=1;l<LogN;++l) for(i=1;i+(1<<l)-1<=n;++i) for(j=1;j+(1<<l)-1<=m;++j)
{
Max[i][j][l]=max(max(Max[i][j][l-1],Max[i+(1<<l-1)][j][l-1]),max(Max[i][j+(1<<l-1)][l-1],Max[i+(1<<l-1)][j+(1<<l-1)][l-1])),
Min[i][j][l]=min(min(Min[i][j][l-1],Min[i+(1<<l-1)][j][l-1]),min(Min[i][j+(1<<l-1)][l-1],Min[i+(1<<l-1)][j+(1<<l-1)][l-1]));
}
}
inline int GetMax(int X1,int Y1,int X2,int Y2) {return max(max(Max[X1][Y1][Log],Max[XX][Y1][Log]),max(Max[X1][YY][Log],Max[XX][YY][Log]));}//区间最大值
inline int GetMin(int X1,int Y1,int X2,int Y2) {return min(min(Min[X1][Y1][Log],Min[XX][Y1][Log]),min(Min[X1][YY][Log],Min[XX][YY][Log]));}//区间最小值
}RMQ;
int main()
{
register int i,j,ans=INF,res;
for(F.read(n),F.read(m),F.read(k),RMQ.Init(),i=1;i<=n-k+1;++i)
for(j=1;j<=m-k+1;++j) res=RMQ.GetMax(i,j,i+k-1,j+k-1)-RMQ.GetMin(i,j,i+k-1,j+k-1),ans=min(ans,res);//枚举区间,更新ans
return F.write(ans),F.end(),0;
}