Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 20960 | Accepted: 7403 |
Description
You are given a sequence of n integers a , a , ... , a in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers a , ... , a.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a , ... , a (-100000 ≤ a ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: a ≤ a. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0
Sample Output
1
4
3
Source
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=1e5+;
int f[maxn],num[maxn],mm[maxn][];
int n;
void ST(){
for(int i=;i<=n;i++)
mm[i][]=num[i];
int k=floor(log((double)n+)/log(2.0));//最多能走2的多少次方
for(int j=;j<=k;j++){
for(int i=;i+(<<j)-<=n;i++)
mm[i][j]=max(mm[i][j-],mm[i+(<<(j-))][j-]);
}
}
int RMQ(int l,int r){
if(l>r)return ;
int k=floor(log((double)(r-l+))/log(2.0));
return max(mm[l][k],mm[r-(<<k)+][k]);
}
int main(){
int q,a,b;
while(~scanf("%d",&n)&&n){
scanf("%d",&q);
for(int i=;i<=n;i++){
scanf("%d",&f[i]);
if(i==){
num[i]=;continue;
}
if(f[i]==f[i-])
num[i]=num[i-]+;
else
num[i]=;
}
ST();
while(q--){
scanf("%d%d",&a,&b);
int t=a;
while(t<=b&&f[t]==f[t-])t++;//处理一下连续的数对查询的影响,找到第一次出现的数的位置
int cnt=RMQ(t,b);
int ans=max(t-a,cnt);//将查询出来的最大值和开头跳过去的数的次数比较一下
printf("%d\n",ans);
}
}
return ;
}
总之,RMQ好像很厉害的样子,好多东西变形一下就可以用RMQ写,溜了,在写HDU的3183,写好之后写题解。
好菜啊,难受。