题目大概:

每个学校都可以把软件复制好,交给它名单上的学校。

问题A:把软件复制成几份,然后交给不同的学校,所有学校才能够都有软件。

问题B:添加几条边,能使得这个图变成强连通图。

思路:

找出所有的强连通分量,然后缩点,变成一个新有向无环图,求每个强连通分量的入度和出度。

A:入度是0的点就是复制的最小数量,因为只要给强连通分量一个软件,他就会传到每个点,所以找出没有入口的强连通分量的数量就是要复制的数量(其他强连通分量都可以由这些分量传递过去)。

B:in0为入度为0点的数量,out0出度为0的点的数量,添加的边的数量是=max(in0,out0);这个不好证明,但画一下图,自己理解一下,也是很容易理解的。

KO:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a)) const int N=;
vector<int>g[N];
vector<int>rg[N];
vector<int>vs;
bool vis[N];
int cmp[N];
int in[N]={};
int out[N]={};
int n,a; void add_edge(int u,int v)
{
g[u].pb(v);
rg[v].pb(u);
} void dfs(int u)
{
vis[u]=true;
for(int i=;i<g[u].size();i++)if(!vis[g[u][i]])dfs(g[u][i]);
vs.pb(u);
} void rdfs(int u,int k)
{
vis[u]=true;
cmp[u]=k;
for(int i=;i<rg[u].size();i++)if(!vis[rg[u][i]])rdfs(rg[u][i],k);
} int scc()
{
mem(vis,false);
vs.clear();
for(int i=;i<=n;i++)if(!vis[i])dfs(i); mem(vis,false);
int k=;
for(int i=vs.size()-;i>=;i--)if(!vis[vs[i]])rdfs(vs[i],k++);
return k;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(); cin>>n;
for(int i=;i<=n;i++)
{
while(cin>>a&&a)add_edge(i,a);
} int t=scc();
for(int i=;i<=n;i++)
{
for(int j=;j<g[i].size();j++)
if(cmp[i]!=cmp[g[i][j]])out[cmp[i]]++,in[cmp[g[i][j]]]++;
}
int in1=,out1=;
for(int i=;i<t;i++)
{
//cout<<in[i]<<' '<<out[i]<<endl;
if(in[i]==)in1++;
if(out[i]==)out1++;
} cout<<in1<<endl;
if(t==)cout<<<<endl;
else cout<<max(in1,out1)<<endl;
return ;
}

TA:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector> using namespace std; const int maxn = + ; int N;
int In[maxn], Out[maxn]; /***************************Tarjan算法模板***************************/
vector<int> G[maxn];
int Mark[maxn], Root[maxn], Stack[maxn]; //时间戳,根(当前分量中时间戳最小的节点),栈
bool Instack[maxn]; //是否在栈中标记
int Ssc[maxn]; //每个节点所在的强连通分量的编号
int Index, Ssc_n, Top; //搜索时用的时间戳,强连通分量总数,栈顶指针 void Tarjan(int u) //u 当前搜索到的点
{
Mark[u] = Root[u] = ++ Index; //每找到一个点,对时间戳和根初始化
Stack[Top ++] = u; //压栈
Instack[u] = true; //在栈中标记 int v; for(int i= ; i< G[u].size(); i++) //向下搜索
{
v = G[u][i];
if(Mark[v] == ) //没到过的点
{
Tarjan(v); //先向下搜索
if(Root[u] > Root[v]) Root[u] = Root[v]; //更新根
}
else if(Instack[v] && Root[u] > Mark[v]) Root[u] = Mark[v]; //到过的点且点仍在栈中,试着看这个点能不能成为根
}
/*对当前点的搜索结束*/
if(Mark[u] == Root[u]) //当前点本身时根
{
Ssc_n ++; //更新强连通分量数 do{ //栈中比它后入栈的元素在以它为根的强连通分量中
v = Stack[-- Top];
Instack[v] = false;
Ssc[v] = Ssc_n;
}while(v != u); //直到它自己
}
} void SSC()
{
memset(Mark, , sizeof Mark); //初始化时间戳和栈内标记
memset(Instack, false, sizeof Instack);
Index = Ssc_n = Top = ; //初始化时间戳,强连通分量数,栈顶指针 for(int i= ; i<= N; i++) //保证图上所有点都访问到
if(Mark[i] == ) Tarjan(i);
}
/***************************Tarjan算法模板***************************/ int main()
{
//freopen("in.txt", "r", stdin); scanf("%d", &N);
for(int i= ; i<= N; i++)
{
int x;
while(scanf("%d", &x), x)
G[i].push_back(x);
} SSC(); if(Ssc_n == ) //只有一个强连通分量的情况
{
cout << "1\n0\n";
return ;
} memset(In, , sizeof In); //求每个强连通分量的入度和出度
memset(Out, , sizeof Out);
for(int u= ; u<= N; u++)
{
for(int i= ; i< G[u].size(); i++)
{
int v = G[u][i];
if(Ssc[u] != Ssc[v])
Out[Ssc[u]] ++, In[Ssc[v]] ++;
}
} int S1 = , S2 = ; //找入度为0、出度为0的点的数目
for(int i= ; i<= Ssc_n; i++)
{
if(In[i] == ) S1 ++;
if(Out[i] == ) S2 ++;
} cout << S1 << endl << max(S1, S2) << endl; return ;
}
05-11 04:56