模型保存和加载

sklearn模型的保存和加载API

  • from sklearn.externals import joblib
    • 保存:joblib.dump(rf, 'test.pkl')
    • 加载:estimator = joblib.load('test.pkl')

线性回归的模型保存加载案例

def linear3():
    """
    岭回归的优化方法对波士顿房价预测
    """
    #获取数据
    boston=load_boston()
    #划分数据集
    x_train,x_test,y_train,y_test=train_test_split(boston.data,boston.target,random_state=22)
    #标准化
    transfer=StandardScaler()
    x_train=transfer.fit_transform(x_train)
    x_test=transfer.transform(x_test)
    #预估器
    # estimator=Ridge(alpha=0.0001, max_iter=100000)
    # estimator.fit(x_train,y_train)

    #保存模型
    # joblib.dump(estimator,"my_ridge.pkl")

    #加载模型
    estimator=joblib.load("my_ridge.pkl")

    #得出模型
    print("岭回归-权重系数为:\n",estimator.coef_)
    print("岭回归-偏置为:\n",estimator.intercept_ )

    #模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:\n", y_predict)
    error = mean_squared_error(y_test, y_predict)
    print("岭回归-均方差误差:\n", error)
    return None


if __name__ == '__main__':
    # linear1()
    # linear2()
    linear3()

保存:保存训练完结束的模型

加载:加载已有的模型,去进行预测结果和之前的模型一样

无监督学习-K-means算法

K-means原理

我们先来看一下一个K-means的聚类效果图

机器学习7-模型保存&无监督学习-LMLPHP

K-means聚类步骤

  • 随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
  • 4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程

我们以一张图来解释效果

机器学习7-模型保存&无监督学习-LMLPHP

K-meansAPI

  • sklearn.cluster.KMeans(n_clusters=8,init=‘k-means++’)
    • k-means聚类
    • n_clusters:开始的聚类中心数量
    • init:初始化方法,默认为'k-means ++’
    • labels_:默认标记的类型,可以和真实值比较(不是值比较)

案例:k-means对Instacart Market用户聚类

机器学习7-模型保存&无监督学习-LMLPHP

 如何评估聚类的效果?

Kmeans性能评估指标

轮廓系数

机器学习7-模型保存&无监督学习-LMLPHP

轮廓系数值分析

机器学习7-模型保存&无监督学习-LMLPHP

分析过程(我们以一个蓝1点为例)

  • 1、计算出蓝1离本身族群所有点的距离的平均值a_i

  • 2、蓝1到其它两个族群的距离计算出平均值红平均,绿平均,取最小的那个距离作为b_i

  • 根据公式:极端值考虑:如果b_i >>a_i: 那么公式结果趋近于1;如果a_i>>>b_i: 那么公式结果趋近于-1

结论

如果b_i>>a_i:趋近于1效果越好, b_i<<a_i:趋近于-1,效果不好。轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

轮廓系数API

  • sklearn.metrics.silhouette_score(X, labels)
    • 计算所有样本的平均轮廓系数
    • X:特征值
    • labels:被聚类标记的目标值

案例-聚类评估

机器学习7-模型保存&amp;无监督学习-LMLPHP

K-means总结

  • 特点分析:采用迭代式算法,直观易懂并且非常实用
  • 缺点:容易收敛到局部最优解(多次聚类)

回归与聚类整体算法总结

机器学习7-模型保存&amp;无监督学习-LMLPHP

 机器学习7-模型保存&amp;无监督学习-LMLPHP

01-23 04:26