1. 算法流程

一般的,一颗决策树包含一个根结点、若干内部结点和若干叶结点;叶节点对应于决策结果,其他每个结点则对应于一个属性测试结果;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到每个叶子结点的路径对应了一个判定测试序列。决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单且直观的“分而支之”策略:

3. Decision Tree-LMLPHP

在决策树算法中,有3种情况会导致递归返回:

  • 当前节点包含的样本属于同一类,无需划分
  • 当前节点属性集为空,或是所有样本在所有属性上取值相同,无法划分
  • 当前节点包含的样本集合为空,不能划分

2. 划分选择

information gain 信息增益  $a_{\star} = \arg\max\limits_{a\in{A}} Gain(D, a)$

information entropy信息熵是度量样本集合纯度最常用的指标。假定当前样本集合$D$中第$k$类样本所占比例为$p_k(k=1,2,...,K)$,则$D$的information entropy是

$Ent(D) = \textbf{-} \sum_{k=1}^{K}p_klog_2^{p_k}$

$Ent(D)$的取值范围为[0, 1]之间,$Ent(D)$的值越小,则$D$的纯度越高。

那么对于$D$的各个结点$D_v$,我们可以算出$D_v$的information entropy,再考虑到不同的分支结点所包含的样本数不均匀,给分支赋予权重$\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}$,这样得到information gain:

$Gain(D,a_{\star}) = Ent(D) - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}Ent(D_v)$

一般来说 infoermation gain 越大,意味着使用属性$a$ 来进行划分所得“纯度提升”越大。这种分裂方式对于可取值数目较多的属性有所偏好。

gain ratio 增益比  $a_{\star} = \arg\max\limits_{a\in{A}} Gain\_ratio(D, a)$

$Gain\_ratio(D, a) = \frac{ Gain(D, a)}{IV(a)}$

$IV(a) =  \textbf{-} \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}log_2{\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}}$

需要注意的是:实际使用gain ratio时:先从候选划分属性中找到信息增益高于平均水平的属性,再从中选择增益比最高的。这种分裂方式对可取值数目较少的属性有所偏好.

CART Gini index基尼指数  $a_{\star} = \arg\min\limits_{a\in{A}} Gini\_index\_ratio(D, a)$

$Gini(D) = \sum_{k=1}^{\lvert{y}\rvert} \sum_{k^{,}\neq{k}}p_kp_{k^{,}} = 1-\sum_{k=1}^{K}p_k^2$

$Gini\_index(D,a) = \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{D}Gini(D_v)$

CART与传统DT相比,分裂中只有两个结点。

3. 剪枝处理

剪枝(pruning)是决策树学习算法对付“过拟合”的主要手段。在决策树学习中,为了尽可能正确分类训练样本,结点划分过程不断重复,有时会造成决策树分支过多,这就可能因训练样本学习得“太好”了,以至于把训练样本集自身的一些特点当成所有数据都具有的一般性质而导致过拟合。因此可以主动去掉一些分支来降低过拟合的风险。

决策树剪枝的基本策略有“预剪枝”(prepruning)和“后剪枝”(post-pruning)。预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能的提升,则停止划分并将当前结点标记为叶结点;后剪枝则是先从训练集生成一颗完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子数替换成叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。

04-15 01:36