generator 1

题目传送门

解题思路

矩阵快速幂。只是平时的矩阵快速幂是二进制的,这题要用十进制的快速幂。

代码如下

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll; inline int read(){
int res = 0, w = 0; char ch = 0;
while(!isdigit(ch)){
w |= ch == '-', ch = getchar();
}
while(isdigit(ch)){
res = (res << 3) + (res << 1) + (ch ^ 48);
ch = getchar();
}
return w ? -res : res;
} ll mod;
struct Matrix{
ll m[2][2];
Matrix(){
m[0][0] = m[0][1] = m[1][0] = m[1][1] = 0;
}
Matrix operator*(const Matrix& a)const{
Matrix ans;
for(int i = 0; i < 2; i ++){
for(int j = 0; j < 2; j ++)
for(int k = 0; k < 2; k ++)
ans.m[i][j] = (ans.m[i][j] + m[i][k] * a.m[k][j]) % mod;
}
return ans;
}
}; Matrix fpow(const Matrix& x, string str)
{
int k = str.size() - 1;
Matrix t = x;
Matrix ans;
ans.m[0][0] = 1, ans.m[1][1] = 1;
while(k >= 0){
for(int i = 1; i <= str[k] - '0'; i ++)
ans = ans * t;
Matrix temp = t * t;
t = temp * temp;
t = t * t * temp;
--k;
}
return ans;
} int main()
{
ios::sync_with_stdio(false);
ll x0, x1, a, b;
string n;
cin >> x0 >> x1 >> a >> b >> n >> mod;
Matrix t;
t.m[0][0] = a, t.m[0][1] = b, t.m[1][0] = 1;
Matrix ans = fpow(t, n);
printf("%lld\n", (ans.m[1][0] * x1 + ans.m[1][1] * x0) % mod);
return 0;
}
05-14 10:27