acm.hdu.edu.cn/showproblem.php?pid=3037
【题意】
- m个松果,n棵树
- 求把最多m个松果分配到最多n棵树的方案数
- 方案数有可能很大,模素数p
- 1 <= n, m <= 1000000000, 1 < p < 100000
【思路】
- 答案为C(n+m,m)%p
对于C(n, m) mod p。这里的n,m,p(p为素数)都很大的情况。就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了。这里用到Lucas定理。
下面证明为什么答案是C(n+m,m):
- 把i个松果分配到最多n棵树的方案数是:C(i+n-1,i)(相当于x1+x2+......+xn=i的解的个数,用插板法,插n-1个板,共i+n-1个位置选i个1,因为xi可能是0,所以满足最多n棵树)
现在就需要求不大于m的,相当于对i = 0,1...,m对C(n+i-1,i)求和,根据公式C(n,k) = C(n-1,k)+C(n-1,k-1)得
C(n-1,0)+C(n,1)+...+C(n+m-1,m)
= C(n,0)+C(n,1)+C(n+1,2)+...+C(n+m-1,m)
= C(n+m,m)
【AC】
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll n,m,p; ll fpow(ll x,ll n,ll p)
{
ll res=;
while(n)
{
if(n&) res=(res*x)%p;
x=(x*x)%p;
n>>=;
}
return res;
}
ll Comb(ll n,ll m,ll p)
{
if(n<m) return ;
if(n==m) return ;
m=min(m,n-m);
ll lm=,ln=;
for(ll i=;i<m;i++)
{
lm=(lm*(m-i))%p;
ln=(ln*(n-i))%p;
}
ll ans=ln*fpow(lm,p-,p)%p;
return ans;
}
ll Lucas(ll n,ll m,ll p)
{
ll ans=;
while(n&&m&&ans)
{
ans=(ans*Comb(n%p,m%p,p))%p;
n/=p;
m/=p;
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld",&n,&m,&p);
n+=m;
ll ans=Lucas(n,m,p);
printf("%lld\n",ans);
}
return ;
}
Lucas模板