题目大意:给定多项式$A$和$B$,求$C$满足:

$$
C_n=\sum\limits_{x\oplus y=n}A_xB_y
$$

其中$\oplus$为位运算($or,and,xor​$)

题解:$FWT$,可以见这篇博客

卡点:

C++ Code:

#include <algorithm>
#include <cstdio>
#define maxn 262144
const int mod = 998244353; namespace Math {
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
} inline void reduce(int &x) { x += x >> 31 & mod; }
inline void clear(register int *l, const int *r) {
if (l >= r) return ;
while (l != r) *l++ = 0;
} int __n, n, lim;
int A[maxn], B[maxn], C[maxn], D[maxn]; inline void FWT_OR(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j + mid] += A[i + j] - mod);
}
inline void IFWT_OR(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j + mid] -= A[i + j]);
} inline void FWT_AND(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j] += A[i + j + mid] - mod);
}
inline void IFWT_AND(int *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) reduce(A[i + j] -= A[i + j + mid]);
} inline void FWT_XOR(int *A, const int op = 1) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) {
const int X = A[i + j], Y = A[i + j + mid];
reduce(A[i + j] += Y - mod), reduce(A[i + j + mid] = X - Y);
}
if (!op) {
const int ilim = Math::inv(lim);
for (register int *i = A; i != A + lim; ++i) *i = static_cast<long long> (*i) * ilim % mod;
}
} int main() {
scanf("%d", &__n); n = Math::pw(2, __n);
for (int i = 0; i < n; ++i) scanf("%d", A + i);
for (int i = 0; i < n; ++i) scanf("%d", B + i);
lim = n; std::copy(A, A + n, C); clear(C + n, C + lim);
std::copy(B, B + n, D); clear(D + n, D + lim);
FWT_OR(C), FWT_OR(D);
for (int i = 0; i < lim; ++i) C[i] = static_cast<long long> (C[i]) * D[i] % mod;
IFWT_OR(C);
for (int i = 0; i < n; ++i) printf("%d ", C[i]); puts(""); std::copy(A, A + n, C); clear(C + n, C + lim);
std::copy(B, B + n, D); clear(D + n, D + lim);
FWT_AND(C), FWT_AND(D);
for (int i = 0; i < lim; ++i) C[i] = static_cast<long long> (C[i]) * D[i] % mod;
IFWT_AND(C);
for (int i = 0; i < n; ++i) printf("%d ", C[i]); puts(""); std::copy(A, A + n, C); clear(C + n, C + lim);
std::copy(B, B + n, D); clear(D + n, D + lim);
FWT_XOR(C), FWT_XOR(D);
for (int i = 0; i < lim; ++i) C[i] = static_cast<long long> (C[i]) * D[i] % mod;
FWT_XOR(C, 0);
for (int i = 0; i < n; ++i) printf("%d ", C[i]); puts("");
return 0;
}
05-11 22:20