tensorflow里面集成了许多基于统计的数学函数,类似于reduce_sum,reduce_mean,reduce_min,reduce_max,等,根据字面意思分别是求和,求平均,求最大,求最小等

reduce_sum() 就是求和,由于求和的对象是tensor,所以是沿着tensor的某些维度求和。reduction_indices是指沿tensor的哪些维度求和,下面以一个例子形容维度求和的具体操作:

下面是个2*3*4的tensor。

[[[ 1 2 3 4]

[ 5 6 7 8]

[ 9 10 11 12]]

[[13 14 15 16]

[17 18 19 20]

[21 22 23 24]]]

如果计算tf.reduce_sum(tensor, axis=0),axis=0说明是按第一个维度进行求和,也就是说把

[[ 1 2 3 4]

[ 5 6 7 8]

[ 9 10 11 12]

[[13 14 15 16]

[17 18 19 20]

[21 22 23 24]]相加,所以第一个维度(也就是2)抹去,求和结束得到的tensor_ans是3*4(之前tensor是2*3*4)。显然tensor_ans的元素分别是1+13;2+14;3+15……;12+24。即:

[[1+13 2+14 3+15 4+16]

[5+17 6+18 7+19 8+20]

[9+21 10+22 11+23 12+24]]。

依次类推,如果axis=1,那么求和结果shape是2*4,即:

[[ 1 + 5 + 9 2 + 6+10 3 + 7+11 4 + 8+12]

[13+17+21 14+18+22 15+19+23 16+20+24]]

如果axis=2,那么求和结果shape是2*3,即:

[[1+2+3+4 5+6+7+8 9+10+11+12]

[13+14+15+16 17+18+19+20 21+22+23+24]]

04-16 10:47