题目传送门

关于求解最长回文子串,有dp做法,也有同样n^2的但只用O(1)的空间,还有KMP,后缀数组??

 int main(void)    {
while (scanf ("%s", str + ) == ) {
int len = strlen (str + );
memset (dp, false, sizeof (dp));
for (int i=; i<=len; ++i) dp[i][i] = true;
for (int i=; i<len; ++i) {
dp[i][i+] = (str[i] == str[i+]);
}
int ans = ;
for (int i=; i<=len; ++i) {
for (int j=; j+i-<=len; ++j) {
if (dp[j+][j+i-] && str[j] == str[j+i-]) {
dp[j][j+i-] = true;
ans = max (ans, i);
}
}
}
printf ("%d\n", ans);
} return ;
}

n^2

但是n^2的复杂度是过不了3068这题,下面用O(n)的算法解决

 waabwswfd
pre: waabwswfd len:
now: $#w#a#a#b#w#s#w#f#d# len:
pi:
maxlen:

例子帮助理解

 /*
题意:求最长回文串(不是最长回文子序列)
Manasher:一个好理解,实现方便,O(n)时间复杂的很屌的算法。
简单说一下原理:首先将原字符串每个相邻之间插入一个不可能在字符串出现的字符,这样可以解决奇偶问题
然后p[i]表示以i为回文中心,最长的回文长度(单边),然而在原字符串中ans = max p[i] - 1
我认为算法精髓在于求p[i]时充分利用了回文的性质,跳过了一些无用的扫描。如果不明白上面有例子
详细解释:中文版 英文版 */
/************************************************
* Author :Running_Time
* Created Time :2015-8-7 19:27:46
* File Name :Manacher.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int MAXN = 1e5 + ;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + ;
char s[MAXN], str[MAXN*];
int p[MAXN*]; int Manacher(void) {
str[] = '$'; str[] = '#';
int len = strlen (s);
for (int i=; i<len; ++i) {
str[i*+] = s[i]; str[i*+] = '#';
}
len = len * + ; str[len] = '\0';
int mx = , id = ;
for (int i=; i<len; ++i) {
if (mx > i) p[i] = min (p[*id-i], mx - i);
else p[i] = ;
while (str[i-p[i]] == str[i+p[i]]) p[i]++;
if (mx < p[i] + i) {
mx = p[i] + i; id = i;
}
}
int ret = ;
for (int i=; i<len; ++i) {
ret = max (ret, p[i]);
}
return ret - ;
} int main(void) { //HDOJ 3068 最长回文
while (scanf ("%s", s) == ) {
printf ("%d\n", Manacher ());
} return ;
}
05-11 19:58