主要思想:

  0、训练集格式:特征1,特征2,...特征n,类别

  1、采用Python自带的数据结构字典递归的表示数据

  2、ID3计算的信息增益是指类别的信息增益,因此每次都是计算类别的熵

  3、ID3每次选择最优特征进行数据划分后都会消耗特征

  4、当特征消耗到一定程度,可能会出现数据实例一样,但是类别不一样的情况,这个时候选不出最优特征而返回-1;

     因此外面要捕获-1,要不然Python会以为最优特征是最后一列(类别)

Python实现决策树ID3算法-LMLPHP

#coding=utf-8
import operator
from math import log
import time
import os, sys
import string def createDataSet(trainDataFile):
print trainDataFile
dataSet = []
try:
fin = open(trainDataFile)
for line in fin:
line = line.strip()
cols = line.split('\t')
row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]]
dataSet.append(row)
#print row
except:
print 'Usage xxx.py trainDataFilePath outputTreeFilePath'
sys.exit()
labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain']
print 'dataSetlen', len(dataSet)
return dataSet, labels #calc shannon entropy
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for feaVec in dataSet:
currentLabel = feaVec[-1]  #每次都是计算类别的熵
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #last col is label
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy -newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature #feature is exhaustive, reture what you want label
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
return max(classCount) def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) ==len(classList): #all data is the same label
return classList[0]
if len(dataSet[0]) == 1: #all feature is exhaustive
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
if(bestFeat == -1): #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果
return classList[0]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree def main():
data,label = createDataSet(sys.argv[1])
t1 = time.clock()
myTree = createTree(data,label)
t2 = time.clock()
fout = open(sys.argv[2], 'w')
fout.write(str(myTree))
fout.close()
print 'execute for ',t2-t1
if __name__=='__main__':
main()
05-11 13:19