1. ID3 算法
ID3 算法是一种典型的决策树(decision tree)算法,C4.5, CART都是在其基础上发展而来。决策树的叶子节点表示类标号,非叶子节点作为属性测试条件。从树的根节点开始,将测试条件用于检验记录,根据测试结果选择恰当的分支;直至到达叶子节点,叶子节点的类标号即为该记录的类别。
ID3采用信息增益(information gain)作为分裂属性的度量,最佳分裂等价于求解最大的信息增益。
信息增益=parent节点熵 - 带权的子女节点的熵
ID3算法流程如下:
1.如果节点的所有类标号相同,停止分裂;
2.如果没有feature可供分裂,根据多数表决确定该节点的类标号,并停止分裂;
3.选择最佳分裂的feature,根据选择feature的值逐一进行分裂;递归地构造决策树。
源代码(从[1]中拿过来):
from math import log
import operator
import matplotlib.pyplot as plt def calcEntropy(dataSet):
"""calculate the shannon entropy"""
numEntries=len(dataSet)
labelCounts={}
for entry in dataSet:
entry_label=entry[-1]
if entry_label not in labelCounts:
labelCounts[entry_label]=0
labelCounts[entry_label]+=1 entropy=0.0
for key in labelCounts:
prob=float(labelCounts[key])/numEntries
entropy-=prob*log(prob,2) return entropy def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers']
return dataSet, labels def splitDataSet(dataSet,axis,pivot):
"""split dataset on feature"""
retDataSet=[]
for entry in dataSet:
if entry[axis]==pivot:
reduced_entry=entry[:axis]
reduced_entry.extend(entry[axis+1:])
retDataSet.append(reduced_entry)
return retDataSet def bestFeatureToSplit(dataSet):
"""chooose the best feature to split """
numFeatures=len(dataSet[0])-1
baseEntropy=calcEntropy(dataSet)
bestInfoGain=0.0; bestFeature=-1
for axis in range(numFeatures):
#create unique list of class labels
featureList=[entry[axis] for entry in dataSet]
uniqueFeaList=set(featureList)
newEntropy=0.0
for value in uniqueFeaList:
subDataSet=splitDataSet(dataSet,axis,value)
prob=float(len(subDataSet))/len(dataSet)
newEntropy+=prob*calcEntropy(subDataSet)
infoGain=baseEntropy-newEntropy
#find the best infomation gain
if infoGain>bestInfoGain:
bestInfoGain=infoGain
bestFeature=axis
return bestFeature def majorityVote(classList):
"""take a majority vote"""
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount+=1
sortedClassCount=sorted(classCount.iteritems(),
key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] def createTree(dataSet,labels):
classList=[entry[-1] for entry in dataSet]
#stop when all classes are equal
if classList.count(classList[0])==len(classList):
return classList[0]
#when no more features, return majority vote
if len(dataSet[0])==1:
return majorityVote(classList) bestFeature=bestFeatureToSplit(dataSet)
bestFeatLabel=labels[bestFeature]
myTree={bestFeatLabel:{}}
del(labels[bestFeature])
subLabels=labels[:]
featureList=[entry[bestFeature] for entry in dataSet]
uniqueFeaList=set(featureList)
#split dataset according to the values of the best feature
for value in uniqueFeaList:
subDataSet=splitDataSet(dataSet,bestFeature,value)
myTree[bestFeatLabel][value]=createTree(subDataSet,subLabels)
return myTree
分类结果可视化
2. Referrence
[1] Peter Harrington, machine learning in action.