题目传送门

题目大意:给你两个只包含A,G,C,T的字符串$S$,$T$,$S$长$T$短,按照如下图方式匹配 解释不明白直接上图

CF528D Fuzzy Search (生成函数+FFT)-LMLPHP

能容错的距离不超过$K$,求能$T$被匹配上的次数

$S$串同一个位置可以被$T$的不同位置匹配多次

对4种字符分别处理,假设我们现在只讨论字符A

对于字符串AGCAATTCAT,字符A的生成函数就是1001100010

题目要求距离不超过K就能匹配,把周围距离不超过$K$的位置都变成1,形成一个新串$S'$

$S$  1001100010

$S'$ 1111110111

只要$T$和$S'$的某个子串匹配时,子串中1的个数 不少于 $T$串中1的个数,就表明$T$串能被匹配上

把$T$串反转,再进行卷积,每一位都分4钟情况讨论即可

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 (1<<19)
#define il inline
#define dd double
#define ld long double
#define ll long long
using namespace std; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int idx(char c)
{
if(c=='A') return ;
if(c=='C') return ;
if(c=='G') return ;
if(c=='T') return ;
}
const int inf=0x3f3f3f3f; namespace FFT{ const dd pi=acos(-);
struct cp{
dd x,y;
friend cp operator + (const cp &s1,const cp &s2){ return (cp){s1.x+s2.x,s1.y+s2.y}; }
friend cp operator - (const cp &s1,const cp &s2){ return (cp){s1.x-s2.x,s1.y-s2.y}; }
friend cp operator * (const cp &s1,const cp &s2){ return (cp){s1.x*s2.x-s1.y*s2.y,s1.y*s2.x+s1.x*s2.y}; }
}a[N1],b[N1],c[N1];
int r[N1];
void FFT(cp *s,int len,int type)
{
int i,j,k; cp wn,w,t;
for(i=;i<len;i++) if(i<r[i]) swap(s[i],s[r[i]]);
for(k=;k<=len;k<<=)
{
wn=(cp){cos(2.0*type*pi/k),sin(2.0*type*pi/k)};
for(i=;i<len;i+=k)
{
w=(cp){,};
for(j=;j<(k>>);j++,w=w*wn)
{
t=w*s[i+j+(k>>)];
s[i+j+(k>>)]=s[i+j]-t;
s[i+j]=s[i+j]+t;
}
}
}
}
void Main(int len,int L)
{
int i;
for(i=;i<len;i++) r[i]=(r[i>>]>>)|((i&)<<(L-));
FFT(a,len,); FFT(b,len,);
for(i=;i<len;i++) c[i]=a[i]*b[i];
FFT(c,len,-);
for(i=;i<len;i++) c[i].x/=len;
}
void init()
{
memset(a,,sizeof(a));
memset(b,,sizeof(b));
} };
using FFT::a; using FFT::b; using FFT::c; int s[N1],t[N1],nt[N1],n,m,K,len,L;
char S[N1],T[N1];
void solve(int p)
{
FFT::init();
int i,j,k,num=;
for(i=,k=;i<n;i++) if(s[i]==p)
for(k=max(k,i-K);k<=min(n,i+K);k++) a[k].x=;
for(i=n-,k=n-;i;i--) if(s[i]==p)
for(k=min(k,i+K);k>=max(,i-K);k--) a[k].x=;
for(i=;i<m;i++) if(t[i]==p) b[m-i-].x=,num++;
FFT::Main(len,L);
for(i=;i<n;i++) if((int)(c[i].x+0.1)<num) nt[i]=;
} int main()
{
int i,j,ans=;
scanf("%d%d%d",&n,&m,&K);
scanf("%s",S); scanf("%s",T);
for(i=;i<n;i++) s[i]=idx(S[i]);
for(i=;i<m;i++) t[i]=idx(T[i]);
for(len=,L=;len<(n+m-);len<<=,L++);
solve();
solve();
solve();
solve();
for(i=;i<n;i++) if(!nt[i]) ans++;
printf("%d\n",ans);
return ; }
05-11 11:09