解题关键:划分树模板题。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAXN=;
int tree[][MAXN],sorted[MAXN],toleft[][MAXN];
void build(int l,int r,int dep){
if(l==r)return;
int mid=(l+r)>>;
int same=mid-l+;//表示等于中间值而且被分入左边的个数
for(int i=l;i<=r;i++)
if(tree[dep][i]<sorted[mid])
same--;
int lpos=l,rpos=mid+;
for(int i=l;i<=r;i++){
if(tree[dep][i]<sorted[mid])//比中间的数小,分入左边
tree[dep+][lpos++]=tree[dep][i];
else if(tree[dep][i]==sorted[mid]&&same>){
tree[dep+][lpos++]=tree[dep][i];
same--;
}
else tree[dep+][rpos++]=tree[dep][i];
toleft[dep][i]=toleft[dep][l-]+lpos-l;//从1到i放左边的个数
}
build(l,mid,dep+);
build(mid+,r,dep+);
} //查询区间第k大的数,[L,R]是大区间,[l,r]是要查询的小区间
int query(int L,int R,int dep,int l,int r,int k){
if(l==r)return tree[dep][l];
int mid=(L+R)>>;
int cnt=toleft[dep][r]-toleft[dep][l-];//[l,r]中位于左边的个数
if(cnt>=k){
//L+要查询的区间前被放在左边的个数
int newl=L+toleft[dep][l-]-toleft[dep][L-];
//左端点加上查询区间会被放在左边的个数
int newr=newl+cnt-;
return query(L,mid,dep+,newl,newr,k);
}
else{
int newr=r+toleft[dep][R]-toleft[dep][r];//懂了
int newl=newr-(r-l-cnt);
return query(mid+,R,dep+,newl,newr,k-cnt);
}
} int main(){
int T;
int n,m;
int s,t,k;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
memset(tree,,sizeof tree);//这个必须
for(int i=;i<=n;i++){
scanf("%d",&tree[][i]);
sorted[i]=tree[][i];
}
sort(sorted+,sorted+n+);
build(,n,);
while(m--){
scanf("%d%d%d",&s,&t,&k);
printf("%d\n",query(,n,,s,t,k));
}
}
return ;
}