[CC-CHEFGRPH]Time to Study Graphs with Chef

题目大意:

一个有向图可以分成\(n+2(n\le10^{12})\)层,第\(0\)层和第\(n+1\)层有\(1\)个点,剩下每一层\(m(m\le10^5)\)个点。每个点到下一层的每一个点都有连边。另外有\(k(k\le5\times10^4)\)条新边,从层数小的点到层数大的点。

问从第\(0\)层到第\(n+1\)层有几种方案。

思路:

将额外边上的点离散出来单独计算答案,不是额外边的点可以直接通过快速幂计算贡献。

时间复杂度\(\mathcal O(k\log k)\)。

源代码:

#include<map>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
using int64=long long;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
using Point=std::pair<int64,int>;
constexpr int mod=1e9+7;
inline int power(int a,int64 k) {
int ret=1;
for(;k;k>>=1) {
if(k&1) ret=(int64)ret*a%mod;
a=(int64)a*a%mod;
}
return ret;
}
std::map<Point,std::vector<Point>> e;
std::map<Point,int> f;
std::map<int64,int> sum;
std::vector<int64> vx;
std::map<int64,std::vector<int>> vy;
int main() {
const int64 n=getint();
const int m=getint(),k=getint();
const Point s=(Point){0,0},t=(Point){n+1,0};
for(register int i=0;i<k;i++) {
const int64 sx=getint();
const int sy=getint();
const int64 tx=getint();
const int ty=getint();
const Point a=(Point){sx,sy},b=(Point){tx,ty};
e[b].emplace_back(a);
if(a!=s) {
vx.emplace_back(sx);
vy[sx].emplace_back(sy);
}
if(b!=t) {
vx.emplace_back(tx);
vy[tx].emplace_back(ty);
}
}
std::sort(vx.begin(),vx.end());
vx.resize(std::unique(vx.begin(),vx.end())-vx.begin());
sum[0]=f[s]=1;
for(register unsigned i=0;i<vx.size();i++) {
const int64 &x=vx[i],lastx=i?vx[i-1]:0;
auto &sumx=sum[x];
(sumx=(int64)sum[lastx]*power(m,x-lastx)%mod)%=mod;
auto &vyx=vy[x];
std::sort(vyx.begin(),vyx.end());
vyx.resize(std::unique(vyx.begin(),vyx.end())-vyx.begin());
for(register unsigned i=0;i<vyx.size();i++) {
const int &y=vyx[i];
const Point p=(Point){x,y};
const auto &ep=e[p];
auto &fp=f[p];
for(register unsigned i=0;i<ep.size();i++) {
const Point &q=ep[i];
(fp+=f[q])%=mod;
}
(sumx+=fp)%=mod;
(fp+=(int64)sum[lastx]*power(m,x-lastx-1)%mod)%=mod;
}
}
(f[t]=(int64)sum[vx.empty()?0:*vx.rbegin()]*power(m,n-(vx.empty()?0:*vx.rbegin()))%mod)%=mod;
for(register unsigned i=0;i<e[t].size();i++) {
(f[t]+=f[e[t][i]])%=mod;
}
printf("%d\n",f[t]);
return 0;
}
05-11 21:54