灯泡开关

初始时有 个灯泡关闭。第 1 轮,你打开所有的灯泡。第 2 轮,每两个灯泡你关闭一次。第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。第 i 轮,每 个灯泡切换一次开关。对于第 轮,你只切换最后一个灯泡的开关。找出 轮后有多少个亮着的灯泡。

示例:

输入: 3

输出: 1

解释:

初始时, 灯泡状态 [关闭, 关闭, 关闭].

第一轮后, 灯泡状态 [开启, 开启, 开启].

第二轮后, 灯泡状态 [开启, 关闭, 开启].

第三轮后, 灯泡状态 [开启, 关闭, 关闭].

你应该返回 1,因为只有一个灯泡还亮着。

A bulb ends up on iff it is switched an odd number of times.

Bulb i is switched in round d iff d divides i. So bulb i ends up on iff it has an odd number of >divisors.

Divisors come in pairs, like i=12 has divisors 1 and 12, 2 and 6, and 3 and 4. Except if i is a >square, like 36 has divisors 1 and 36, 2 and 18, 3 and 12, 4 and 9, and double divisor 6. So bulb >i ends up on iff and only if i is a square.

So just count the square numbers.

大概解释一下,当一个灯泡被执行偶数次switch操作时它是关着的,当被执行奇数次switch操作时它是开着的,那么这题就是要找出哪些编号的灯泡会被执行奇数次操作。

现在假如我们执行第i

次操作,即从编号i开始对编号每次+i进行switch操作,对于这些灯来说,

如果其编号j(j=1,2,3,⋯,n)能够整除i,则编号j的灯需要执switch操作。

具备这样性质的i是成对出现的,比如:

j=12时,编号为12的灯,在第1次,第12次;第2次,第6次;第3次,第4次一定会被执行Switch操作,这样的话,编号为12的等肯定为灭。

但是当完全平方数36就不一样了,因为他有一个特殊的因数6,这样当i=6时,只能被执行一次Switch操作,这样推出,完全平方数一定是亮着的,所以本题的关键在于找完全平方数的个数。

 class Solution {
public int bulbSwitch(int n) {
return (int) Math.sqrt(n);
}
}


05-11 20:13