大意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们包起来,并计算出木板站整个包装面积的百分比。

思路:按照题意将所有矩形顶点坐标存起来,旋转时先旋转从中心出发的向量,求得各个坐标之后,求凸包即可。

水。。。。

 #include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<memory.h>
#include<cstdlib>
#include<vector>
#define clc(a,b) memset(a,b,sizeof(a))
#define LL long long int
#define up(i,x,y) for(i=x;i<=y;i++)
#define w(a) while(a)
using namespace std;
const int inf=0x3f3f3f3f;
const int N = ;
const double eps = *1e-;
const double pi = acos(-); const double PI = acos(-1.0);
double torad(double deg)
{
return deg/ * PI;
} struct Point
{
double x, y;
Point(double x=, double y=):x(x),y(y) { }
}; typedef Point Vector; Vector operator + (const Vector& A, const Vector& B)
{
return Vector(A.x+B.x, A.y+B.y);
}
Vector operator - (const Point& A, const Point& B)
{
return Vector(A.x-B.x, A.y-B.y);
}
double Cross(const Vector& A, const Vector& B)
{
return A.x*B.y - A.y*B.x;
} Vector Rotate(const Vector& A, double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
} bool operator < (const Point& p1, const Point& p2)
{
return p1.x < p2.x || (p1.x == p2.x && p1.y < p2.y);
} bool operator == (const Point& p1, const Point& p2)
{
return p1.x == p2.x && p1.y == p2.y;
} // 点集凸包
// 如果不希望在凸包的边上有输入点,把两个 <= 改成 <
// 如果不介意点集被修改,可以改成传递引用
vector<Point> ConvexHull(vector<Point> p)
{
// 预处理,删除重复点
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()), p.end()); int n = p.size();
int m = ;
vector<Point> ch(n+);
for(int i = ; i < n; i++)
{
while(m > && Cross(ch[m-]-ch[m-], p[i]-ch[m-]) <= ) m--;
ch[m++] = p[i];
}
int k = m;
for(int i = n-; i >= ; i--)
{
while(m > k && Cross(ch[m-]-ch[m-], p[i]-ch[m-]) <= ) m--;
ch[m++] = p[i];
}
if(n > ) m--;
ch.resize(m);
return ch;
} // 多边形的有向面积
double PolygonArea(vector<Point> p)
{
double area = ;
int n = p.size();
for(int i = ; i < n-; i++)
area += Cross(p[i]-p[], p[i+]-p[]);
return area/;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n;
double area1 = ;
scanf("%d", &n);
vector<Point> P;
for(int i = ; i < n; i++)
{
double x, y, w, h, j, ang;
scanf("%lf%lf%lf%lf%lf", &x, &y, &w, &h, &j);
Point o(x,y);
ang = -torad(j);
P.push_back(o + Rotate(Vector(-w/,-h/), ang));
P.push_back(o + Rotate(Vector(w/,-h/), ang));
P.push_back(o + Rotate(Vector(-w/,h/), ang));
P.push_back(o + Rotate(Vector(w/,h/), ang));
area1 += w*h;
}
double area2 = PolygonArea(ConvexHull(P));
printf("%.1lf %%\n", area1*/area2);
}
return ;
}
05-08 15:47