类似于Linux管道重定向机制,前一个Map的输出直接作为下一个Map的输入,形成一个流水线。设想这样一个场景:在Map阶段,数据经过mapper01和mapper02处理;在Reduce阶段,数据经过sort和shuffle后,交给对应的reducer处理。reducer处理后并没有直接写入到Hdfs, 而是交给了另一个mapper03处理,它产生的最终结果写到hdfs输出目录中。

注意:对任意MR作业,Map和Reduce阶段可以有无限个Mapper,但reduer只能有一个。

package chain;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
import org.apache.hadoop.mapreduce.lib.chain.ChainReducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Chain { /**
* 手机 5000 * 需求:
* 电脑 2000 * 在第一个Mapper1里面过滤大于10000的数据
* 衣服 300   * 第二个Mapper2里面过滤掉大于100-10000的数据
* 鞋子 1200 * Reduce里面进行分类汇总并输出
* 裙子 434 * Reduce后的Mapper3里过滤掉商品名长度大于3的数据
* 手套 12 *
* 图书 12510 *
* 小商品 5   * 结果:
* 小商品 3 * 手套 12
* 订餐 2 * 订餐 2
*/ public static void main(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(Chain.class); /**
* 配置mapper1
* 注意此处带参数的构造函数:new Configuration(false)
*/
Configuration map1Conf = new Configuration(false);
ChainMapper.addMapper(job, //主作业
Mapper1.class, //待加入的map class
LongWritable.class, //待加入map class的输入key类型
Text.class, //待加入map class的输入value类型
Text.class, //待加入map class的输出key类型
VLongWritable.class, //待加入map class的输出value类型
map1Conf); //待加入map class的配置信息 //配置mapper2
ChainMapper.addMapper(job, Mapper2.class, Text.class, VLongWritable.class, Text.class, VLongWritable.class, new Configuration(false)); /**
* 配置Reducer
* 注意此处使用的是setReducer()方法
*/
ChainReducer.setReducer(job, Reducer_Only.class, Text.class, VLongWritable.class, Text.class, VLongWritable.class, new Configuration(false)); //配置mapper3
ChainReducer.addMapper(job, Mapper3.class, Text.class, VLongWritable.class, Text.class, VLongWritable.class, new Configuration(false)); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
} //Mapper1
public static class Mapper1 extends Mapper<LongWritable, Text, Text, VLongWritable>{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { /**
* Hadoop中默认的输入格式 TextOutputFormat 只支持UTF-8格式
* 所以解决GBK中文输出乱码问题的方法是:
* 1. 先将输入的Text类型的value转换为字节数组
* 2. 然后使用String的构造器String(byte[] bytes, int offset, int length, Charset charset)
* 3. 通过使用指定的charset解码指定的byte子数组,构造一个新的String
*/
String line=new String(value.getBytes(),0,value.getLength(),"GBK");
String[] splited = line.split(" "); //过滤大于10000的数据
if(Integer.parseInt(splited[1])<10000L){
context.write(new Text(splited[0]), new VLongWritable(Long.parseLong(splited[1])));
}
}
} //Mapper2
public static class Mapper2 extends Mapper<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void map(Text key, VLongWritable value, Context context)
throws IOException, InterruptedException { //过滤100-10000间的数据
if(value.get()<100L){
context.write(key, value);
}
}
} //Reducer
public static class Reducer_Only extends Reducer<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void reduce(Text key, Iterable<VLongWritable> v2s, Context context)
throws IOException, InterruptedException { long sumLong=0L; for(VLongWritable vLongWritable : v2s){
sumLong += vLongWritable.get(); context.write(key, new VLongWritable(sumLong));
}
}
} //Mapper3
public static class Mapper3 extends Mapper<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void map(Text key, VLongWritable value, Context context)
throws IOException, InterruptedException { String line=new String(key.getBytes(),0,key.getLength(),"GBK"); //过滤商品名称长度大于3
if(line.length()<3){
context.write(key, value);
}
}
}
}
05-25 21:46