取石子(二)

时间限制:3000 ms  |  内存限制:65535 KB
难度:5
http://acm.nyist.net/JudgeOnline/problem.php?pid=135
描述

小王喜欢与同事玩一些小游戏,今天他们选择了玩取石子。

游戏规则如下:共有N堆石子,已知每堆中石子的数量,并且规定好每堆石子最多可以取的石子数(最少取1颗)。

两个人轮流取子,每次只能选择N堆石子中的一堆,取一定数量的石子(最少取一个),并且取的石子数量不能多于该堆石子规定好的最多取子数,等哪个人无法取子时就表示此人输掉了游戏。

假设每次都是小王先取石子,并且游戏双方都绝对聪明,现在给你石子的堆数、每堆石子的数量和每堆石子规定的单次取子上限,请判断出小王能否获胜。

输入
第一行是一个整数T表示测试数据的组数(T<100)

每组测试数据的第一行是一个整数N(1<N<100),表示共有N堆石子,随后的N行每行表示一堆石子,这N行中每行有两个数整数m,n表示该堆石子共有m个石子,该堆石子每次最多取n个。(0<=m,n<=2^31)
输出
对于每组测试数据,输出Win表示小王可以获胜,输出Lose表示小王必然会败。
样例输入
2
1
1000 1
2
1 1
1 1
样例输出
Lose
Lose
提示
注意下面一组测试数据

2

1 1 

2 2

正确的结果应该是Win

因为小王会先从第二堆石子中取一个石子,使状态变为

1 1

1 2

这种状态下,无论对方怎么取,小王都能获胜。

典型的尼姆博弈,其问题背景(题意)是:有N堆物品,其中第i堆有Pi个物品,每次去掉某一堆里最多m个物品(m>0),两个人轮流取物品,谁不能继续取谁就输;

定义:如果一个局面,先手必胜,就称之为N局面,反之,称之为P局面。对于一个局面,另S=P1^P2^p3^……^Pn.若S=0,则称之为P局面,否则为N局面。

题解:分别将P1,P2,P3,…,Pn对m+1取余,得到的值再执行S=P1^P2^p3^……^Pn.

利用上面的定义即可;

证明略;

AC代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
int t,n,a,k;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int s=0;
for(int i=0;i<n;i++)
{
scanf("%d%d",&a,&k);
s^=a%(k+1);
}
if(s==0)
printf("Lose\n");
else
printf("Win\n");
}
return 0;
}
05-11 20:37