题目链接:

https://vjudge.net/problem/POJ-1511

题目大意:

给定节点数n,和边数m,边是单向边.

问从1节点出发到2,3,...n 这些节点路程和从从这些节点回来到节点1的路程和最小值。

n,m不超过1e6

思路:

POJ-3268是一样的,大概思路都是正向从源点求最短路,然后把图反向,再从源点求最短路,但是这道题是它的进阶版本,由于点数过多,不可以用邻接矩阵存图,这里用前向星存图,同时存下两张图,一张正向,一张反向。Dijkstra算法用队列优化,注意用long long存答案和dist最短路距离。其他的就是模板题了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<sstream>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + ;
const int INF = 1e9 + ;
int T, n, m, cases;
struct edge
{
int next, u, v, w;
};
edge a[][maxn];//a[0][]存正边 a[1][]存反边
ll d[maxn];
int head[][maxn];
bool v[maxn];
void init()
{
memset(head, -, sizeof(head));
}
struct HeapNode
{
int d, u;//d是距离,u是顶点
HeapNode(){}
HeapNode(int d, int u):d(d), u(u){}
bool operator <(const HeapNode & a)const
{
return d > a.d;
}
};
void dijkstra(int cnt)
{
priority_queue<HeapNode>q;
for(int i = ; i <= n; i++)d[i] = INF;
d[] = ;
memset(v, , sizeof(v));
q.push(HeapNode(, ));
while(!q.empty())
{
HeapNode now = q.top();
q.pop();
int u = now.u;
if(v[u])continue;
v[u] = ;//标记
for(int i = head[cnt][u]; ~i; i = a[cnt][i].next)
{
edge& e = a[cnt][i];
int v = e.v, w = e.w;
if(d[v] > d[u] + w)
{
d[v] = d[u] + w;
q.push(HeapNode(d[v], v));
}
}
}
}
int main()
{
scanf("%d", &T);
while(T--)
{
init();
scanf("%d%d", &n, &m);
int u, v, w;
for(int i = ; i <= m; i++)
{
scanf("%d%d%d", &u, &v, &w);
//正向存边
a[][i].u = u;
a[][i].v = v;
a[][i].w = w;
a[][i].next = head[][u];
head[][u] = i;
//反向存边
a[][i].u = v;
a[][i].v = u;
a[][i].w = w;
a[][i].next = head[][v];
head[][v] = i;
}
ll ans = ;
dijkstra();
for(int i = ; i <= n; i++)ans += d[i];
dijkstra();
for(int i = ; i <= n; i++)ans += d[i];
cout<<ans<<endl;
}
return ;
}
04-17 18:19