115. 不同的子序列

给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数。

一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)

示例 1:

输入: S = “rabbbit”, T = “rabbit”

输出: 3

解释:

如下图所示, 有 3 种可以从 S 中得到 “rabbit” 的方案。

(上箭头符号 ^ 表示选取的字母)

rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^

示例 2:

输入: S = “babgbag”, T = “bag”

输出: 5

解释:

如下图所示, 有 5 种可以从 S 中得到 “bag” 的方案。

(上箭头符号 ^ 表示选取的字母)

babgbag
^^ ^
babgbag
^^ ^
babgbag
^ ^^
babgbag
^ ^^
babgbag
^^^

PS:

还是佩服大佬们的面向测试用例编程

 /**
* 动态规划 但是效率并不高 20ms 35.83%
* 大部分都是二维动态规划 有的代码相同但是是5ms 估计是测试用例有变动
* 但是看到还是有节省的算法 所以一步一步往下优化
*
* * b a b g b a g
* * 1 1 1 1 1 1 1 1
* b 0 1 1 2 2 3 3 3
* a 0 0 1 1 1 1 4 4
* g 0 0 0 0 1 1 1 5
* @param s
* @param t
* @return
*/
public int numDistinct(String s, String t) {
int[][] dp = new int[t.length() + 1][s.length() + 1];
//初始化第一行
for(int j = 0; j <= s.length(); j++){
dp[0][j] = 1;
} for(int i = 1; i <= t.length(); i++){
for(int j = 1; j <= s.length(); j++){
if(t.charAt(i-1) == s.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + dp[i][j-1];
}else {
dp[i][j] = dp[i][j-1];
}
}
}
return dp[t.length()][s.length()];
} /**
* 二维换一维 严格按照二维的流程 参见上面矩阵 这个是15ms
* @param s
* @param t
* @return
*/
public int numDistinct2(String s, String t) {
int[] dp = new int[s.length() + 1];
Arrays.fill(dp, 1);
int pre = 1;
//每行算一次
for(int i = 0; i < t.length(); i++){
//0-n算n+1次
for(int j = 0; j <= s.length(); j++){
//先保存dp[j]下次用
int temp = dp[j];
if(j == 0){
dp[j] = 0;
}else {
if(t.charAt(i) == s.charAt(j-1)){
dp[j] = dp[j-1] + pre;
}else {
dp[j] = dp[j-1];
}
}
pre = temp;
}
}
return dp[s.length()];
} /**
* 列主序 倒序计算 就不用保存临时值pre了
* 可以按上图二维矩阵的顺序模仿一下 这个是11ms
* @param s
* @param t
* @return
*/
public int numDistinct3(String s, String t) {
// dp[0]表示空串
int[] dp = new int[t.length() + 1];
// dp[0]永远是1,因为不管S多长,都只能找到一个空串,与T相等
dp[0] = 1; for (int i = 0; i < s.length(); i++){
for (int j = t.length() - 1; j >= 0; j--) {
if (t.charAt(j) == s.charAt(i)) {
dp[j + 1] += dp[j];
}
}
}
return dp[t.length()];
} /**
* 列主序 先构造字典 就不用遍历t了
* 这样就优化成了答案上的2ms的了
* @param s
* @param t
* @return
*/
public int numDistinct4(String s, String t) {
// dp[0]表示空串
int[] dp = new int[t.length() + 1];
// dp[0]永远是1,因为不管S多长,都只能找到一个空串,与T相等
dp[0] = 1; //t的字典
int[] map = new int[128];
Arrays.fill(map, -1); //从尾部遍历的时候可以遍历 next类似链表 无重复值时为-1,
//有重复时例如从rabbit的b开始索引在map[b] = 2 next[2] 指向下一个b的索引为3
// for (int j = t.length() - 1; j >= 0; j--) {
// if (t.charAt(j) == s.charAt(i)) {
// dp[j + 1] += dp[j];
// }
// }
//这段代码的寻址就可以从map[s.charAt(i)] 找到索引j 在用next[j] 一直找和 s.charAt(i)相等的字符 其他的就可以跳过了
//所以这个代码的优化 关键要理解 上面的一维倒算
int[] nexts = new int[t.length()];
for(int i = 0 ; i < t.length(); i++){
int c = t.charAt(i);
nexts[i] = map[c];
map[c] = i;
} for (int i = 0; i < s.length(); i++){
char c = s.charAt(i);
for(int j = map[c]; j >= 0; j = nexts[j]){
dp[j + 1] += dp[j];
}
}
return dp[t.length()];
}
05-22 19:35