题意:

给你n m q,表示在这一组数据中所有的01串长度均为n,然后给你一个含有m个元素的multiset,之后有q次询问。每次询问会给你一个01串t和一个给定常数k,让你输出串t和multiset里面多少个元素的“Wu”值不超过k。对于“Wu”值的定义:如果两个01串s和t在位置i上满足s[i]==t[i],那么加上w[i],处理完s和t的所有n位之后的结果即为这两个01串的“Wu”值。

n<12,k<100,m<5e5

思路:

n很小,k也很小,所以串的状态最多2^12次,预处理出sum[i][j]为串x(x转化为二进制i)与multiset里的wu值为j的数量

预处理复杂度O($2^n*2^n*n$)

询问的时候也可以与处理一下sum,不过这题k很小

代码:

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional>
#include<list> #define fst first
#define sc second
#define pb push_back
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x))
#pragma Gcc optimize(2) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const int maxn = 5e5 + ;
const int maxm = 5e3 + ;
const double eps = 1e-;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
int scan(){
int res=,ch,flag=;
if((ch=getchar())=='-')
flag=;
else if(ch>=''&&ch<='')
res=ch-'';
while((ch=getchar())>=''&&ch<='')
res=res*+ch-'';
return flag?-res:res;
} int w[maxn];
int cnt[ + ];
int sum[ + ][ + ];
int main(){
int n, m, q;
scanf("%d %d %d", &n, &m, &q);
mem(cnt, );
mem(sum, );
for(int i = ; i <= n; i++){
scanf("%d", &w[i]);
} for(int i = ; i <= m; i++){
char s[];
scanf("%s", s);
int x = ;
for(int j = ; j < n; j++){
if(s[j]=='')x += <<(n-j-);
} cnt[x]++;
} for(int i = ; i <= (<<); i++){
for(int j = ; j <= (<<); j++){
if(!cnt[j])continue;
int tmp = ;
for(int k = ; k <= ; k++){
if((i&(<<k))==(j&(<<k)))tmp+=w[n-k];
if(tmp > ) break;
}
if(tmp <= ) sum[i][tmp] += cnt[j];
} }
for(int i = ; i <= q; i++){
char s[];int c;
scanf("%s %d", s, &c);
int x = ;
for(int j = ; j < n; j++) if(s[j]=='')x += <<(n-j-);
int ans = ;
for(int j = ; j <= c; j++)ans+=sum[x][j];
printf("%d\n", ans);
} return ;
}
/*
*/
05-18 07:58