Description
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。
Input
文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
Output
文件中仅包含一个整数ans,代表篱笆的最短长度。
Sample Input
2 2
2 2
1 1
2 2
1 1
Sample Output
2
数据范围
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100
最小割……好久不做网络流这么简单的建模都不会了……
把狼和周围的空地和羊连边,空地和周围的空地和羊连边
S连狼,INF E连羊,INF
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#define MAXM (1000000+10)
#define MAXN (30000+10)
#define id(x,y) (x-1)*m+y
using namespace std;
struct node
{
int Flow;
int next;
int to;
} edge[MAXM*];
int Depth[MAXN];
int head[MAXN],num_edge;
int n,m,s,e,x,y,INF,a[][];
int dx[]= {,,-,,},dy[]= {,,,,-};
queue<int>q; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].Flow=l;
edge[num_edge].next=head[u];
head[u]=num_edge;
} bool Bfs(int s,int e)
{
memset(Depth,,sizeof(Depth));
q.push(s);
Depth[s]=;
while (!q.empty())
{
int x=q.front();
q.pop();
for (int i=head[x]; i!=; i=edge[i].next)
if (!Depth[edge[i].to] && edge[i].Flow>)
{
Depth[edge[i].to]=Depth[x]+;
q.push(edge[i].to);
}
}
return Depth[e];
} int Dfs(int x,int low)
{
int Min,f=;
if (x==e || low==)
return low;
for (int i=head[x]; i!=; i=edge[i].next)
if (edge[i].Flow> && Depth[edge[i].to]==Depth[x]+ && (Min=Dfs(edge[i].to,min(low,edge[i].Flow))))
{
edge[i].Flow-=Min;
edge[((i-)^)+].Flow+=Min;
low-=Min;
f+=Min;
if (low==) return f;
}
if (!f) Depth[x]=-;
return f;
} int Dinic(int s,int e)
{
int Ans=;
while (Bfs(s,e))
Ans+=Dfs(s,0x7fffffff);
return Ans;
} int main()
{
memset(&INF,0x7f,sizeof(INF));
s=,e=;
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
{
scanf("%d",&a[i][j]);
if (a[i][j]==) add(s,id(i,j),INF),add(id(i,j),s,);
if (a[i][j]==) add(id(i,j),e,INF),add(e,id(i,j),);
for (int k=; k<=; ++k)
{
int x=i+dx[k],y=j+dy[k];
if (x< || x>n || y< || y>m) continue;
if (a[i][j]== && a[x][y]!= || a[i][j]== && a[i][j]!=)
add(id(i,j),id(x,y),),add(id(x,y),id(i,j),);
}
}
printf("%d\n",Dinic(s,e));
}