【题目链接】
【题目大意】求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值
【思路】来图更直观:
这个究竟是怎样推出的。说实话。本人数学归纳大法没有推出来,幸得一个大神给定愿文具体证明。点击这里:click here~~
代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
const int MOD=1e9+7;
typedef long long LL;
LL p[N];
LL arr[N];
bool ok(int n) //推断n是不是仅仅有一个质因子。p[n]表示n最大的质因子。 {
int t=p[n];
while(n%t==0&&n>1) n/=t;
return n==1;
}
LL poww(LL a,LL b)
{
LL res=a,ans=1;
while(b)
{
if(b&1) ans=res*ans%MOD;
res=res*res%MOD;
b>>=1;
}
return ans;
}
LL niyuan(LL a) /// 求逆元
{
return poww(a,MOD-2);
}
inline LL read()
{
int c=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();}
return c*f;
}
void init()
{
for(int i=1; i<N; ++i) p[i]=i;
for(int i=2; i<N; ++i) if(p[i]==i)
{
for(int j=i+i; j<N; j+=i)
p[j]=i;
}
arr[0]=1;
for(int i=1; i<N; ++i)//求LCM
{
if(ok(i))
arr[i]=arr[i-1]*p[i]%MOD;
else arr[i]=arr[i-1];
}
}
int main()
{
init();
int t;t=read();
while(t--)
{
int n;n=read();
LL ans=arr[n+1]*niyuan(n+1)%MOD;//由欧拉定理a^(p-1) mod p = 1 p是质数 所以a的逆元是a^{p-2}
printf("%lld\n",ans);
} return 0;
}