• 熵:H(p)=−∑xp(x)logp(x)
  • 交叉熵:H(p,q)=−∑xp(x)logq(x)
  • 相对熵:KL(p∥q)=−∑xp(x)logq(x)p(x)
    • 相对熵(relative entropy)也叫 KL 散度(KL divergence);
    • 用来度量两分布之间的不相似性(dissimilarity);

通过交叉熵的定义,连接三者:

H(p,q)===−∑xp(x)logq(x)−∑xp(x)logp(x)−∑xp(x)logq(x)p(x)H(p)+KL(p∥q)

1. 简森不等式与 KL散度

KL(p∥q)=−∫p(x)lnq(x)p(x)dx

因为 −lnx 是凸函数,所以满足,凸函数的简森不等式的性质:

f(E)≤E(f)

这里我们令 f(⋅)=−lnx,则其是关于 x 的凸函数,因此:

E(f())≥f(E)⇓−∫p(x)lnq(x)p(x)dx≥−ln∫q(x)dx=0

也即 KL 散度恒大于等于 0;

05-25 17:31