本篇介绍MapReduce的一些高级特性,如计数器、数据集的排序和连接。计数器是一种收集作业统计信息的有效手段。排序是MapReduce的核心技术,MapReduce也可以运行大型数据集间的“”连接(join)操作。
计数器
计数器是一种收集作业统计信息的有效手段,用于质量控制或应用级统计。计数器还可用于辅助诊断系统故障。对于大型分布式系统来说,获取计数器比分析日志文件easy的多。
演示样例一:气温缺失及不规则数据计数器
import java.io.IOException;
import java.util.Iterator; import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; //统计最高气温的作业。也统计气温值缺少的记录,不规范的记录
public class MaxTemperatureWithCounters extends Configured implements Tool { enum Temperature {
MiSSING, MALFORMED
} static class MaxTemeratureMapperWithCounters extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> { private NcdcRecordParser parser = new NcdcRecordParser(); @Override
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
parser.parse(value);
if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
output.collect(new Text(parser.getYear()), new IntWritable(
airTemperature));
} else if (parser.isMa1formedTemperature()) {
reporter.incrCounter(Temperature.MALFORMED, 1);
} else if (parser.IsMissingTemperature()) {
reporter.incrCounter(Temperature.MALFORMED, 1);
} } } static class MaxTemperatureReduceWithCounters extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int maxValue = Integer.MIN_VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());
}
output.collect(key, new IntWritable(maxValue)); }
} @Override
public int run(String[] args) throws Exception {
args = new String[] { "/test/input/t", "/test/output/t" }; // 给定输入输出路径
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;
}
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MaxTemeratureMapperWithCounters.class);
conf.setCombinerClass(MaxTemperatureReduceWithCounters.class);
conf.setReducerClass(MaxTemperatureReduceWithCounters.class);
JobClient.runJob(conf);
return 0;
} public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureWithCounters(), args);
System.exit(exitCode);
}
}
演示样例二:统计气温信息缺失记录所占比例
import org.apache.hadoop.conf.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
//统计气温缺失记录所占比例 public class MissingTemperatureFields extends Configured implements Tool { @Override
public int run(String[] args) throws Exception {
String jobID = args[0];
JobClient jobClient = new JobClient(new JobConf(getConf()));
RunningJob job = jobClient.getJob(JobID.forName(jobID));
if (job == null) {
System.err.printf("No job with ID %s found.\n", jobID);
return -1;
}
if (!job.isComplete()) {
System.err.printf("Job %s is not complete.\n", jobID);
return -1;
}
Counters counters = job.getCounters();
long missing = counters
.getCounter(MaxTemperatureWithCounters.Temperature.MiSSING);
long total = counters.findCounter(
"org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS")
.getCounter();
System.out.printf("Records with missing temperature fields:%.2f%%\n",
100.0 * missing / total);
return 0;
} public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MissingTemperatureFields(), args);
System.exit(exitCode);
}
}
hadoop jar xx.jar MissingTemperatureFields job_1400072670556_0001
排序
排序是MapReduce的核心技术。
虽然应用本身可能并不须要对数据排序,但仍可能使用MapReduce的排序功能来组织数据。以下将讨论几种不同的数据集排序方法。以及怎样控制MapReduce的排序。
实例一、数据准备:将天气数据转成顺序文件格式
import java.io.IOException; import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*; public class SortDataPreprocessor extends Configured implements Tool {
static class CleanerMapper extends MapReduceBase implements
Mapper<LongWritable, Text, IntWritable, Text> { private NcdcRecordParser parser = new NcdcRecordParser(); @Override
public void map(LongWritable key, Text value,
OutputCollector<IntWritable, Text> output, Reporter reporter)
throws IOException {
parser.parse(value);
if (parser.isValidTemperature()) {
output.collect(new IntWritable(parser.getAirTemperature()),
value);
}
}
} @Override
public int run(String[] args) throws Exception {
args = new String[] { "/test/input/t", "/test/input/seq" };
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;
}
conf.setMapperClass(CleanerMapper.class);
conf.setOutputKeyClass(IntWritable.class);
conf.setOutputValueClass(Text.class);
conf.setNumReduceTasks(0);
conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setCompressOutput(conf, true);
SequenceFileOutputFormat
.setOutputCompressorClass(conf, GzipCodec.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);
JobClient.runJob(conf);
return 0;
} public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortDataPreprocessor(), args);
System.exit(exitCode);
}
}
演示样例二、部分排序
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*; public class SortByTemperatureUsingHashPartitioner extends Configured implements
Tool { @Override
public int run(String[] args) throws Exception {
args = new String[] { "/test/input/seq", "/test/output/t" };
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;
}
conf.setInputFormat(SequenceFileInputFormat.class);
conf.setOutputKeyClass(IntWritable.class);
conf.setOutputFormat(SequenceFileOutputFormat.class);
conf.setNumReduceTasks(5);//设置5个reduce任务。输出5个文件
SequenceFileOutputFormat.setCompressOutput(conf, true);
SequenceFileOutputFormat
.setOutputCompressorClass(conf, GzipCodec.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);
JobClient.runJob(conf);
return 0;
} public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(
new SortByTemperatureUsingHashPartitioner(), args);
System.exit(exitCode);
} }
hadoop jar test.jar SortByTemperatureUsingHashPartitioner -D mapred.reduce.tasks=30
产生多个已经排好序的小文件。
连接
MapReduce可以运行大型数据集间的“”连接(join)操作,可是从头编写相关代码来运行连接比較麻烦。
也可以考虑使用一个更高级的框架,如Pig、Hive或Casading等。它们都将连接操作视为整个实现的核心部分。
本章的代码用到的基础工具类
其它章节也可能用到:)
JobBuilder
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.util.Tool; public class JobBuilder { public static JobConf parseInputAndOutput(Tool tool, Configuration conf,
String[] args) {
if (args.length != 2) {
printUsage(tool, "<input><output>");
return null;
}
JobConf jobConf = new JobConf(conf, tool.getClass());
FileInputFormat.addInputPath(jobConf, new Path(args[0]));
FileOutputFormat.setOutputPath(jobConf, new Path(args[1]));
return jobConf;
} public static void printUsage(Tool tool, String extraArgsUsage) {
System.err.printf("Usage:%s [genericOptions] %s\n\n", tool.getClass()
.getSimpleName(), extraArgsUsage);
}
}
NcdcRecordParser
import org.apache.hadoop.io.Text; public class NcdcRecordParser {
private static final int MISSING_TEMPERATURE = 9999; private String year;
private int airTemperature;
private String quality; public void parse(String record) {
year = record.substring(15, 19);
String airTemperatureString;
// Remove leading plus sign as parseInt doesn't like them
if (record.charAt(87) == '+') {
airTemperatureString = record.substring(88, 92);
} else {
airTemperatureString = record.substring(87, 92);
}
airTemperature = Integer.parseInt(airTemperatureString);
quality = record.substring(92, 93);
} public void parse(Text record) {
parse(record.toString());
} public boolean isValidTemperature() {
return airTemperature != MISSING_TEMPERATURE
&& quality.matches("[01459]");
} public boolean isMa1formedTemperature() {
return !quality.matches("[01459]");
} public boolean IsMissingTemperature() {
return airTemperature == MISSING_TEMPERATURE;
} public String getYear() {
return year;
} public int getAirTemperature() {
return airTemperature;
}
}
这一篇是《Hadoop权威指南》第八章的学习笔记,好久没看Hadoop,工作中也没使用,前不久学习的东西。忘记了非常多。学以致用是非常重要的。没用应用的学习,终于会忘记大部分,感兴趣的就须要多多温习了。