题意简叙:
FarmerFarmerFarmer JohnJohnJohn有B头奶牛(1<=B<=25000)(1<=B<=25000)(1<=B<=25000),有N(2∗B<=N<=50000)N(2*B<=N<=50000)N(2∗B<=N<=50000)个农场,编号1−N1-N1−N,有M(N−1<=M<=100000)M(N-1<=M<=100000)M(N−1<=M<=100000)条双向边,第i条边连接农场RiR_iRi和Si(1<=Ri<=N;1<=Si<=N)S_i(1<=R_i<=N;1<=S_i<=N)Si(1<=Ri<=N;1<=Si<=N),该边的长度是Li(1<=Li<=2000)L_i(1<=L_i<=2000)Li(1<=Li<=2000)。居住在农场PiP_iPi的奶牛A(1<=Pi<=N)A(1<=P_i<=N)A(1<=Pi<=N),它想送一份新年礼物给居住在农场Qi(1<=Qi<=N)Q_i(1<=Q_i<=N)Qi(1<=Qi<=N)的奶牛B,但是奶牛A必须先到FJ(居住在编号1的农场)那里取礼物,然后再送给奶牛B。你的任务是:奶牛A至少需要走多远的路程?
题目分析:
不难看出,这就是一道单元最短路的裸题
我们可以首先用dijkstra单源最短路跑出1到所有点之间的最短路径,然后每问一次就调用一次即可,具体见代码。
代码:
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
#define pa pair<int,int>
#define maxn 100010
priority_queue<pa,vector<pa>,greater<pa> > q;
struct edge
{
int val,to;
};
int n,m,s,dis[maxn];
bool vis[maxn];
vector<edge>e[maxn];
int main()
{
int b;
scanf("%d%d%d",&n,&m,&b);
s=1;
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
edge tmp;
tmp.to=y;
tmp.val=z;
e[x].push_back(tmp);
tmp.to=x;
tmp.val=z;
e[y].push_back(tmp);//注意这里一定要存储双向边
}
//start
for(int i=1;i<=n;i++)
{
dis[i]=2147483647;//初始化
}
dis[s]=0;
q.push(make_pair(0,s));
while(q.empty()==0)
{
int x=q.top().second;
q.pop();
if(vis[x]==1)
continue;
vis[x]=1;
for(int i=0;i<e[x].size();i++)
{
int y=e[x][i].to;
if(dis[x]+e[x][i].val<dis[y])
{
dis[y]=dis[x]+e[x][i].val;
q.push(make_pair(dis[y],y));
}
}
}
//finish
//以上的部分皆为dijkstra标准模板,写的还算比较正规,感谢趣的同志可以收藏一下。(逃
for(int i=1;i<=b;i++)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",dis[x]+dis[y]);//直接调用
}
return 0;
}