$O(n*3^n)$好难想...还有好多没见过的操作

  令$f[i][j]$表示最深深度为i,点的状态为j的最小代价,每次枚举状态$S$后,计算$S$的补集里的每个点与S里的点的最小连边代价,再$O(3^n)$枚举S补集的子集,$g[x]$表示补集里状态为x的点往S集合里的点连边的最小代价,然后转移的时候加上它就好。

  但是$g[x]$怎么处理呢...处理不好就会变成$O(3^n*n^2)$了,当然也可以预处理,但是有更简单的方法。因为我们枚举补集的时候是按顺序的,当前状态去掉最低位的状态一定是算过了的,于是就可以用减去lowbit的$g[x-lowbit(x)]$加上最低位往S的某个点连边的最小代价来得到。

  学习到的一些技巧是枚举状态之后每次减去lowbit得到所有的点效率可以提高一些,用于卡常,还有就是上方的$O(n^3)$就能预处理出$g[x]$的方法,都好喵喵啊~

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=, inf=6e6;
int n, m, x, y, z;
int mp[maxn][maxn], f[maxn][<<], g[<<], h[<<], Log[<<], a[maxn], mncost[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int min(int a, int b){return a<b?a:b;}
int main()
{
read(n); read(m); memset(mp, , sizeof(mp));
for(int i=;i<=m;i++) read(x), read(y), read(z), mp[x][y]=mp[y][x]=min(mp[x][y], z);
for(int i=;i<n;i++) Log[<<i]=i+;
memset(f, , sizeof(f));
for(int i=;i<=n;i++) f[][<<(i-)]=;
int st=(<<n)-, ans=inf;
for(int i=;i<=n;i++)
{
for(int j=;j<=st;j++)
{
int cnt=;
for(int k=st-j;k;k-=k&-k)
{
int x=Log[k&-k]; a[++cnt]=x; mncost[x]=inf;
for(int l=j;l;l-=l&-l) mncost[x]=min(mncost[x], min(1ll*inf, 1ll*mp[Log[l&-l]][x]*(i-)));
}
for(int k=;k<(<<cnt);k++)
{
g[k]=g[k-(k&-k)]+mncost[a[Log[k&-k]]];
h[k]=k?h[k-(k&-k)]|(<<(a[Log[k&-k]]-)):;
f[i][j|h[k]]=min(f[i][j|h[k]], f[i-][j]+g[k]);
}
}
ans=min(ans, f[i][st]);
}
printf("%d\n", ans);
return ;
}

  

05-11 19:21