前言

最近在看侯捷的一套课程《C++面向对象开发》,刚看完第一节introduction之后就被疯狂圈粉。感觉侯捷所提及所重视的部分也正是我一知半解的知识盲区,我之前也写过一些C++面向对象的程序,不过正如侯捷所说,我还仅仅停留于Object-based层面,写程序时总是在想如何封装好一个类,而不是Object-oriented强调类与类之间关系的设计。

这门课程分为两部分,第一部分讲Object-based,第二部分讲Object-oriented;第一部分又分为两部分:带指针的类的封装和不带指针类的封装。

本文将以模板库中的complx复数类的部分内容为核心,在分析源代码的同时,讲解一些良好的代码风格和编程习惯,比如inline内联函数的使用、friend友元函数的使用、函数参数及返回值何时pass by value何时pass by reference等等。

部分代码

complex.h

 #ifndef __COMPLEX__
#define __COMPLEX__ class complex
{
public:
complex(double r = , double i = )
: re (r), im (i)
{ }
complex& operator += (const complex&);
double real () const { return re; }
double imag () const { return im; }
private:
double re, im; friend complex& __doapl (complex*, const complex&);
}; #endif

complex.cpp

 #include "complex.h"
#include <iostream> using namespace std; inline complex& __doapl(complex* ths, const complex& r)
{
ths->re += r.re;
ths->im += r.im;
return *ths;
} inline complex& complex::operator += (const complex& r)
{
return __doapl (this, r);
} inline double imag (const complex& x)
{
return x.imag ();
} inline double real (const complex& x)
{
return x.real ();
} inline complex operator + (const complex& x, const complex& y)
{
return complex (real (x) + real (y), imag (x) + imag (y));
} inline complex operator + (const complex& x, double y)
{
return complex (real (x) + y, imag (x));
} inline complex operator + (double x, const complex& y)
{
return complex (x + real (y), imag (y));
} ostream& operator << (ostream& os, const complex& x)
{
return os << ' (' << real (x) << "," << imag (x) << ')';
}

源码解析

一、complex.h

1.1 initialization list

         //程序1.1
complex(double r = 0, double i = 0)
: re (r), im (i)
{ }

构造函数参数缺省,比较常规。

值得注意的是,变量的初始化尽量放在初始化列表中(initialization list)。当然,完全可以在构造函数的函数体中赋值进行初始化。不过,侯捷指出,一个对象在产生过程中分为初始化和成功产生两部分,initialization list相当于在初始化过程中对变量赋值,而在函数体中赋值则是放弃了initialization list初始化这一过程,会降低效率。对于“性能榨汁机”的C++语言来讲,重视每个细节效率的重要性是毫无疑问的。

1.2参数及返回值传递方式

        //程序1.2 2
complex& operator += (const complex&);

传递参数时,如果能用引用传递那么一定不要用值传递,因为值传递的过程中变量需要copy一份样本传入函数中,当参数很多或参数类型复杂时,会导致效率变慢。

其次,如果函数不会改变参数的值,一定要加const限定,在初学时养成良好的变成习惯尤为重要。

关于函数的返回值,同样是最好按引用传递,当然,有些情况无法按引用传递,这点将在2.3讲解。

其实,参数列表中还隐藏一个this,这点将在2.2讲解。

1.3友元函数

       //程序1.3
friend complex& __doapl (complex*, const complex&);

我们可以看到,在complex.h文件的末尾定义了一个友元函数,友元函数打破了类的封装,它不是类的成员函数,却可以使用点操作符来获取类的private变量。当然,非友元函数也可以通过get函数来获取,不过速度会慢一些。

二、complex.cpp

2.1 友元函数及内联函数

//程序2.1
inline complex& __doapl(complex* ths, const complex& r)
{
ths->re += r.re;
ths->im += r.im;
return *ths;
}

我们首先来分析一下这个友元函数,这里有两点值得探讨:

第一这个函数将r的实部和虚部加到ths上,r在函数体中值没用发生改变,所以使用const限定。

第二这个函数被设计成inline内联函数,我们都知道,内联函数是把代码块直接复制到函数需要调用的地方,通过省略函数调用这一过程来提高效率,那么我们为什么不将所有函数都设计成内联函数呢?其实我们的inline声明只是对编译器的一个建议,对于过于复杂的函数来讲,及时我们声明了inline,编译器也会调用执行。所以,对于一些“小巧”的函数,我们尽量设计为内联函数。

2.2 隐藏的“this”

//程序2.2
inline complex& complex::operator += (const complex& r)
{
return __doapl (this, r);
}

操作符重载作为C++的特点之一,有令别的语言羡慕之处,当然也有些难以理解。

实际上,这个函数的参数还有一个隐藏的this,这个this就是函数调用者。

侯捷《C++面向对象开发》——动手实现自己的复数类-LMLPHP

2.3 不能为reference的返回值

//程序2.3
inline complex operator + (const complex& x, const complex& y)
{
return complex (real (x) + real (y), imag (x) + imag (y));
} inline complex operator + (const complex& x, double y)
{
return complex (real (x) + y, imag (x));
} inline complex operator + (double x, const complex& y)
{
return complex (x + real (y), imag (y));
}

注意,这里函数的返回值不能返回reference,这其实是使用临时对象(typename ()),在函数体内定义变量,然后把这个变量的引用传递出去,函数结束后变量本体死亡,传出去的引用既没有意义了。

侯捷《C++面向对象开发》——动手实现自己的复数类-LMLPHP

2.4 非成员函数的操作符重载

//程序2.4
ostream& operator << (ostream& os, const complex& x)
{
return os << ' (' << real (x) << "," << imag (x) << ')';
}

下面讲一下为什么有的操作符重载函数定义成非成员函数?

我们知道,操作符重载只作用在左边的操作数上,试想一下,如果把“<<”定义为成员函数,那每次调用岂不是要这样c1 << cout

侯捷《C++面向对象开发》——动手实现自己的复数类-LMLPHP

完整代码

以上就是我在学习过程中特别注意的地方,下面给出complex类完整代码,只不过多了几种操作运算,大体思路完全一致。

complex.h

 #ifndef __MYCOMPLEX__
#define __MYCOMPLEX__ class complex;
complex&
__doapl (complex* ths, const complex& r);
complex&
__doami (complex* ths, const complex& r);
complex&
__doaml (complex* ths, const complex& r); class complex
{
public:
complex (double r = , double i = ): re (r), im (i) { }
complex& operator += (const complex&);
complex& operator -= (const complex&);
complex& operator *= (const complex&);
complex& operator /= (const complex&);
double real () const { return re; }
double imag () const { return im; }
private:
double re, im; friend complex& __doapl (complex *, const complex&);
friend complex& __doami (complex *, const complex&);
friend complex& __doaml (complex *, const complex&);
}; inline complex&
__doapl (complex* ths, const complex& r)
{
ths->re += r.re;
ths->im += r.im;
return *ths;
} inline complex&
complex::operator += (const complex& r)
{
return __doapl (this, r);
} inline complex&
__doami (complex* ths, const complex& r)
{
ths->re -= r.re;
ths->im -= r.im;
return *ths;
} inline complex&
complex::operator -= (const complex& r)
{
return __doami (this, r);
} inline complex&
__doaml (complex* ths, const complex& r)
{
double f = ths->re * r.re - ths->im * r.im;
ths->im = ths->re * r.im + ths->im * r.re;
ths->re = f;
return *ths;
} inline complex&
complex::operator *= (const complex& r)
{
return __doaml (this, r);
} inline double
imag (const complex& x)
{
return x.imag ();
} inline double
real (const complex& x)
{
return x.real ();
} inline complex
operator + (const complex& x, const complex& y)
{
return complex (real (x) + real (y), imag (x) + imag (y));
} inline complex
operator + (const complex& x, double y)
{
return complex (real (x) + y, imag (x));
} inline complex
operator + (double x, const complex& y)
{
return complex (x + real (y), imag (y));
} inline complex
operator - (const complex& x, const complex& y)
{
return complex (real (x) - real (y), imag (x) - imag (y));
} inline complex
operator - (const complex& x, double y)
{
return complex (real (x) - y, imag (x));
} inline complex
operator - (double x, const complex& y)
{
return complex (x - real (y), - imag (y));
} inline complex
operator * (const complex& x, const complex& y)
{
return complex (real (x) * real (y) - imag (x) * imag (y),
real (x) * imag (y) + imag (x) * real (y));
} inline complex
operator * (const complex& x, double y)
{
return complex (real (x) * y, imag (x) * y);
} inline complex
operator * (double x, const complex& y)
{
return complex (x * real (y), x * imag (y));
} complex
operator / (const complex& x, double y)
{
return complex (real (x) / y, imag (x) / y);
} inline complex
operator + (const complex& x)
{
return x;
} inline complex
operator - (const complex& x)
{
return complex (-real (x), -imag (x));
} inline bool
operator == (const complex& x, const complex& y)
{
return real (x) == real (y) && imag (x) == imag (y);
} inline bool
operator == (const complex& x, double y)
{
return real (x) == y && imag (x) == ;
} inline bool
operator == (double x, const complex& y)
{
return x == real (y) && imag (y) == ;
} inline bool
operator != (const complex& x, const complex& y)
{
return real (x) != real (y) || imag (x) != imag (y);
} inline bool
operator != (const complex& x, double y)
{
return real (x) != y || imag (x) != ;
} inline bool
operator != (double x, const complex& y)
{
return x != real (y) || imag (y) != ;
} #include <cmath> inline complex
polar (double r, double t)
{
return complex (r * cos (t), r * sin (t));
} inline complex
conj (const complex& x)
{
return complex (real (x), -imag (x));
} inline double
norm (const complex& x)
{
return real (x) * real (x) + imag (x) * imag (x);
} ostream&
operator << (ostream& os, const complex& x)
{
return os << '(' << real (x) << ',' << imag (x) << ')';
} #endif //__MYCOMPLEX__

complex_test.cpp

 #include <iostream>
#include "complex.h" using namespace std; int main()
{
complex c1(, );
complex c2(, ); cout << c1 << endl;
cout << c2 << endl; cout << c1+c2 << endl;
cout << c1-c2 << endl;
cout << c1*c2 << endl;
cout << c1 / << endl; cout << conj(c1) << endl;
cout << norm(c1) << endl;
cout << polar(,) << endl; cout << (c1 += c2) << endl; cout << (c1 == c2) << endl;
cout << (c1 != c2) << endl;
cout << +c2 << endl;
cout << -c2 << endl; cout << (c2 - ) << endl;
cout << ( + c2) << endl; return ;
}

总结

作为初学者,一定要养成良好的编程习惯,正如侯捷所说:“一出手就是大家风范”。

05-20 03:40