数据来自 UCI 数据集 匹马印第安人糖尿病数据集
载入数据
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_breast_cancer data_set = pd.read_csv('pima-indians-diabetes.csv')
data = data_set.values[:,:] y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y)
建立决策树,网格搜索微调模型
# In[1] 网格搜索微调模型
pipeline = Pipeline([
('clf',DecisionTreeClassifier(criterion='entropy'))
])
parameters={
'clf__max_depth':(3,5,10,15,20,25,30,35,40),
'clf__min_samples_split':(2,3),
'clf__min_samples_leaf':(1,2,3)
}
#GridSearchCV 用于系统地遍历多种参数组合,通过交叉验证确定最佳效果参数。
grid_search = GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=-1,scoring='f1')
grid_search.fit(X_train,y_train) # 获取搜索到的最优参数
best_parameters = grid_search.best_estimator_.get_params()
print("最好的F1值为:",grid_search.best_score_)
print('最好的参数为:')
for param_name in sorted(parameters.keys()):
print('t%s: %r' % (param_name,best_parameters[param_name])) # In[2] 输出预测结果并评价
predictions = grid_search.predict(X_test)
print(classification_report(y_test,predictions))
最好的F1值为: 0.5573515325670498
最好的参数为:
tclf__max_depth: 5
tclf__min_samples_leaf: 1
tclf__min_samples_split: 2
评价模型
# In[2] 输出预测结果并评价
predictions = grid_search.predict(X_test)
print(classification_report(y_test,predictions))
precision recall f1-score support 0.0 0.74 0.89 0.81 124
1.0 0.67 0.43 0.52 68
画出决策树
# In[3]打印树
from sklearn import tree
feature_name=data_set.columns.values.tolist()[:-1] # 列名称
DT = tree.DecisionTreeClassifier(criterion='entropy',max_depth=5,min_samples_split=2,min_samples_leaf=5)
DT.fit(X_train,y_train) '''
# 法一
import pydotplus
from sklearn.externals.six import StringIO
dot_data = StringIO()
tree.export_graphviz(DT,out_file = dot_data,feature_names=feature_name,
class_names=["有糖尿病","无病"],filled=True,rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("Tree.pdf")
print('Visible tree plot saved as pdf.')
''' # 法二
import graphviz
#ID3为决策树分类器fit之后得到的模型,注意这里必须在fit后执行,在predict之后运行会报错
dot_data = tree.export_graphviz(DT, out_file=None,feature_names=feature_name,class_names=["有糖尿病","无病"]) # doctest: +SKIP
graph = graphviz.Source(dot_data) # doctest: +SKIP
#在同级目录下生成tree.pdf文件
graph.render("tree2") # doctest: +SKIP
随机森林
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_breast_cancer data_set = pd.read_csv('pima-indians-diabetes.csv')
data = data_set.values[:,:] y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y) RF = RandomForestClassifier(n_estimators=10,random_state=11)
RF.fit(X_train,y_train)
predictions = RF.predict(X_test)
print(classification_report(y_test,predictions))
precision recall f1-score support 0.0 0.82 0.91 0.86 126
1.0 0.78 0.61 0.68 66 micro avg 0.81 0.81 0.81 192
macro avg 0.80 0.76 0.77 192
weighted avg 0.80 0.81 0.80 192