首先先看Iris数据集
Sepal.Length——花萼长度Sepal.Width——花萼宽度
Petal.Length——花瓣长度Petal.Width——花瓣宽度
通过上述4中属性可以预测花卉属于Setosa,Versicolour,Virginica 三个种类中的哪一类
决策树 by CART
决策树有挺多种,这里讲下CART
CART的执行过程是这样的:
- 用特征值k和下限tk二分子集
- 不断二分,直到到达最大深度或者划分不能再减少不纯度为止
这一下sklearn都会自动帮我们完成,我们调用就行了
如何避免过拟合问题
减小最大深度等等
一个tip:
min_* 的调大
max_*的调小
就是DecisionTreeClassifier里面的参数,具体看文档_(:з」∠)_
损失函数的比较
sklearn提供了两种损失函数gini和entropy
gini是通过计算每个节点的不纯度,具体公式如下↓
\(J(k,t_k) = \frac{m_{left}}{m}G_{left} + \frac{m_{right}}{m}G_{right}\)
entropy在这里就不再赘述了
sklearn默认的是调用gini,因为gini的速度会快点,而且两者最后的效果是差不多的,真要比的话entropy产生的决策树会更平衡点
接下来我们来看代码
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
import numpy as np
iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target #目标值
tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42) #定义最大深度和确定随机种子
tree_clf.fit(X, y) #训练
print(tree_clf.predict_proba([[5, 1.5]])) #预测返回的是可能性
#以上代码运行后将会产生如下输出 [[ 0. 0.90740741 0.09259259]]
#分别代表属于每一种类别可能的概率
#也可以用如下代码
print(tree_clf.predict[[5,1.5]]) #直接输出属于哪一类
看下上面生成的决策树的样子
注:
valuse是它划分到各个类的数量
samples 指的是当前节点的数据个数
从左表橙色的点可以看出,gini=0意味着划分到了相同的类别里面
ps.以上代码及图片来自《Hands-On Machine Learning with Scikit-Learn》一书
如需转载请注明出处
喜欢要不支持下(:з」∠)