在机器学习多分类任务中有时候需要针对类别进行分层采样,比如说类别不均衡的数据,这时候随机采样会造成训练集、验证集、测试集中不同类别的数据比例不一样,这是会在一定程度上影响分类器的性能的,这时候就需要进行分层采样保证训练集、验证集、测试集中每一个类别的数据比例差不多持平。
下面python代码。
# 将数据按照类别进行分层划分
def save_file_stratified(filename, ssdfile_dir, categories):
"""
将文件分流到3个文件中
filename: 原数据地址,一个csv文件
文件内容格式: 类别\t内容
"""
f_train = open('../data/usefuldata-711depart/train.txt', 'w', encoding='utf-8')
f_val = open('../data/usefuldata-711depart/val.txt', 'w', encoding='utf-8')
f_test = open('../data/usefuldata-711depart/test.txt', 'w', encoding='utf-8')
# f_class = open('../data/usefuldata-37depart/class.txt', 'w', encoding='utf-8')
dict_ssdqw = {}
for ssdfile in os.listdir(ssdfile_dir):
ssdfile_name = os.path.join(ssdfile_dir, ssdfile)
f = open(ssdfile_name, 'r', encoding='utf-8')
content_qw = ''
content = f.readline()
# 以下部分,因为统计整个案件基本情况他有换行,所以将多行处理在一行里面
while content:
content_qw += content
content_qw = content_qw.replace('\n', '')
content = f.readline()
ssdfile_key = str(ssdfile).replace('.txt','')
dict_ssdqw[ssdfile_key] = content_qw
# doc_count代表每一类数据总共有多少个
doc_count_0 = 0
doc_count_1 = 0
doc_count_2 = 0
doc_count_3 = 0
doc_count_4 = 0
doc_count_5 = 0
doc_count_6 = 0
doc_count_7 = 0
doc_count_8 = 0
doc_count_9 = 0
doc_count_10 = 0
doc_count_11 = 0
doc_count_12 = 0
temp_file = open(filename, 'r', encoding='utf-8')
line = temp_file.readline()
while line:
line_content = line.split(',')
name = line_content[0]
if name in dict_ssdqw:
label = line_content[1]
if label == categories[0]:
doc_count_0 += 1
elif label == categories[1]:
doc_count_1 += 1
elif label == categories[2]:
doc_count_2 += 1
elif label == categories[3]:
doc_count_3 += 1
elif label == categories[4]:
doc_count_4 += 1
elif label == categories[5]:
doc_count_5 += 1
elif label == categories[6]:
doc_count_6 += 1
elif label == categories[7]:
doc_count_7 += 1
elif label == categories[8]:
doc_count_8 += 1
elif label == categories[9]:
doc_count_9 += 1
elif label == categories[10]:
doc_count_10 += 1
elif label == categories[11]:
doc_count_11 += 1
elif label == categories[12]:
doc_count_12 += 1
line = temp_file.readline()
temp_file.close()
# 总数量
doc_count = doc_count_0 + doc_count_1 + doc_count_2 + doc_count_3 +\
doc_count_4 + doc_count_5 + doc_count_6 + doc_count_7 +\
doc_count_8 + doc_count_9 + doc_count_10 + doc_count_11 + doc_count_12
class_set = set()
tag_train_0 = doc_count_0 * 70 / 100
tag_train_1 = doc_count_1 * 70 / 100
tag_train_2 = doc_count_2 * 70 / 100
tag_train_3 = doc_count_3 * 70 / 100
tag_train_4 = doc_count_4 * 70 / 100
tag_train_5 = doc_count_5 * 70 / 100
tag_train_6 = doc_count_6 * 70 / 100
tag_train_7 = doc_count_7 * 70 / 100
tag_train_8 = doc_count_8 * 70 / 100
tag_train_9 = doc_count_9 * 70 / 100
tag_train_10 = doc_count_10 * 70 / 100
tag_train_11= doc_count_11 * 70 / 100
tag_train_12 = doc_count_12 * 70 / 100
tag_val_0 = doc_count_0 * 85 / 100
tag_val_1 = doc_count_1 * 85 / 100
tag_val_2 = doc_count_2 * 85 / 100
tag_val_3 = doc_count_3 * 85 / 100
tag_val_4 = doc_count_4 * 85 / 100
tag_val_5 = doc_count_5 * 85 / 100
tag_val_6 = doc_count_6 * 85 / 100
tag_val_7 = doc_count_7 * 85 / 100
tag_val_8 = doc_count_8 * 85 / 100
tag_val_9 = doc_count_9 * 85 / 100
tag_val_10 = doc_count_10 * 85 / 100
tag_val_11 = doc_count_11 * 85 / 100
tag_val_12 = doc_count_12 * 85 / 100
# tag_test = doc_count * 70 / 100
tag_0 = 0
tag_1 = 0
tag_2 = 0
tag_3 = 0
tag_4 = 0
tag_5 = 0
tag_6 = 0
tag_7 = 0
tag_8 = 0
tag_9 = 0
tag_10 = 0
tag_11 = 0
tag_12 = 0
# 有些文书行业标记是空!!我想看看有多少条?
blank_tag = 0
# 标记一下,每个类别有多少个训练集、验证集、测试集?
train_class_tag = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
val_class_tag = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
test_class_tag = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# csvfile = open(filename, 'r', encoding='utf-8')
txtfile = open(filename, 'r', encoding='utf-8')
process_line = txtfile.readline()
while process_line:
line_content = process_line.split(',')
name = line_content[0]
if name in dict_ssdqw:
content = dict_ssdqw[name]
label = line_content[1]
# if label != '' and label != '其他行业':
if label != '':
class_set.add(label)
# 对每一类进行分层采样
if label == categories[0]:
tag_0 += 1
if tag_0 < tag_train_0:
f_train.write(label + '\t' + content + '\n')
train_class_tag[0] += 1
elif tag_0 < tag_val_0:
f_val.write(label + '\t' + content + '\n')
val_class_tag[0] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[0] += 1
elif label == categories[1]:
tag_1 += 1
if tag_1 < tag_train_1:
f_train.write(label + '\t' + content + '\n')
train_class_tag[1] += 1
elif tag_1 < tag_val_1:
f_val.write(label + '\t' + content + '\n')
val_class_tag[1] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[1] += 1
elif label == categories[2]:
tag_2 += 1
if tag_2 < tag_train_2:
f_train.write(label + '\t' + content + '\n')
train_class_tag[2] += 1
elif tag_2 < tag_val_2:
f_val.write(label + '\t' + content + '\n')
val_class_tag[2] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[2] += 1
elif label == categories[3]:
tag_3 += 1
if tag_3 < tag_train_3:
f_train.write(label + '\t' + content + '\n')
train_class_tag[3] += 1
elif tag_3 < tag_val_3:
f_val.write(label + '\t' + content + '\n')
val_class_tag[3] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[3] += 1
elif label == categories[4]:
tag_4 += 1
if tag_4 < tag_train_4:
f_train.write(label + '\t' + content + '\n')
train_class_tag[4] += 1
elif tag_4 < tag_val_4:
f_val.write(label + '\t' + content + '\n')
val_class_tag[4] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[4] += 1
elif label == categories[5]:
tag_5 += 1
if tag_5 < tag_train_5:
f_train.write(label + '\t' + content + '\n')
train_class_tag[5] += 1
elif tag_5 < tag_val_5:
f_val.write(label + '\t' + content + '\n')
val_class_tag[5] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[5] += 1
elif label == categories[6]:
tag_6 += 1
if tag_6 < tag_train_6:
f_train.write(label + '\t' + content + '\n')
train_class_tag[6] += 1
elif tag_6 < tag_val_6:
f_val.write(label + '\t' + content + '\n')
val_class_tag[6] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[6] += 1
elif label == categories[7]:
tag_7 += 1
if tag_7 < tag_train_7:
f_train.write(label + '\t' + content + '\n')
train_class_tag[7] += 1
elif tag_7 < tag_val_7:
f_val.write(label + '\t' + content + '\n')
val_class_tag[7] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[7] += 1
elif label == categories[8]:
tag_8 += 1
if tag_8 < tag_train_8:
f_train.write(label + '\t' + content + '\n')
train_class_tag[8] += 1
elif tag_8 < tag_val_8:
f_val.write(label + '\t' + content + '\n')
val_class_tag[8] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[8] += 1
elif label == categories[9]:
tag_9 += 1
if tag_9 < tag_train_9:
f_train.write(label + '\t' + content + '\n')
train_class_tag[9] += 1
elif tag_9 < tag_val_9:
f_val.write(label + '\t' + content + '\n')
val_class_tag[9] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[9] += 1
elif label == categories[10]:
tag_10 += 1
if tag_10 < tag_train_10:
f_train.write(label + '\t' + content + '\n')
train_class_tag[10] += 1
elif tag_10 < tag_val_10:
f_val.write(label + '\t' + content + '\n')
val_class_tag[10] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[10] += 1
elif label == categories[11]:
tag_11 += 1
if tag_11 < tag_train_11:
f_train.write(label + '\t' + content + '\n')
train_class_tag[11] += 1
elif tag_11 < tag_val_11:
f_val.write(label + '\t' + content + '\n')
val_class_tag[11] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[11] += 1
elif label == categories[12]:
tag_12 += 1
if tag_12 < tag_train_12:
f_train.write(label + '\t' + content + '\n')
train_class_tag[12] += 1
elif tag_12 < tag_val_12:
f_val.write(label + '\t' + content + '\n')
val_class_tag[12] += 1
else:
f_test.write(label + '\t' + content + '\n')
test_class_tag[12] += 1
else:
blank_tag += 1
process_line = txtfile.readline()
txtfile.close()
print("有" + str(blank_tag) + "个文书的行业标记为空!")
print("train:")
print(train_class_tag)
train_tag_total =0
for i_total in train_class_tag:
train_tag_total += i_total
train_class_tag_distribute = []
for i in train_class_tag:
train_class_tag_distribute.append((i / train_tag_total) * 100)
print("分布:")
print(train_class_tag_distribute)
print("val:")
print(val_class_tag)
val_tag_total = 0
for i_total in val_class_tag:
val_tag_total += i_total
val_class_tag_distribute = []
for i in val_class_tag:
val_class_tag_distribute.append((i / val_tag_total) * 100)
print("分布:")
print(val_class_tag_distribute)
print("test:")
print(test_class_tag)
test_tag_total = 0
for i_total in test_class_tag:
test_tag_total += i_total
test_class_tag_distribute = []
for i in test_class_tag:
test_class_tag_distribute.append((i / test_tag_total) * 100)
print("分布:")
print(test_class_tag_distribute)
f_train.close()
f_test.close()
f_val.close()
if __name__ == '__main__':
categories = [
"class1",
"class2",
"class3",
"class4",
"class5",
"class6",
"class7",
"class8",
"class9",
"class10",
"class11",
"class12",
"class13"
]
save_file_stratified('../data/qwdata/shuffle-try3/classified_table_ms.txt', '../data/qwdata/ms-ygscplusssdqw',categories)
后面可以看到类别划分
这里要注意的一点是:这是我早期写的文章,需要注意的一点是,我们通常在训练集和验证集上做分层采样即可,测试集最好保持原样不要动。