题目:https://www.luogu.org/problemnew/show/P2312
https://www.lydsy.com/JudgeOnline/problem.php?id=3751
10^10000 太大了,高精度也很难做,怎么办?
注意我们要求的是方程的值 = 0 的解,不妨在取模意义下做,因为真正使方程 = 0 的解在模意义下也是 0;
然后可以用秦九韶算法,O(n) 算每个枚举的答案;
避免出错要多对几个数取模,就像哈希时有多个模数一样;
据说模数大小在 2e4 左右比较好;
模数多了会 T,少了会错,最后取了5个才勉强过去;
考试时遇到这种题怎么估计...
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const maxn=,maxm=1e6+;
int n,m,a[][maxn],p[]={,,,,,};
int pri[maxm],cnt,ans[maxm],c=;
bool vis[maxm],fl[][];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
int f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<='')
{
for(int k=;k<=c;k++)
a[k][i]=(a[k][i]*+ch-'')%p[k];
ch=getchar();
}
for(int k=;k<=c;k++)a[k][i]=(a[k][i]*f+p[k])%p[k];//!
}
int cnt=;
for(int k=;k<=c;k++)
for(int x=;x<p[k]&&x<=m;x++)//
{
int ret=;
for(int i=n;i>=;i--)ret=((ll)ret*x%p[k]+a[k][i])%p[k];
if(ret)fl[k][x]=;
}
for(int i=;i<=m;i++)
{
bool flag=;
for(int k=;k<=c;k++)if(fl[k][i%p[k]]){flag=; break;};
if(!flag)ans[++cnt]=i;
}
printf("%d\n",cnt);
for(int i=;i<=cnt;i++)printf("%d\n",ans[i]);
return ;
}