题目描述
给出n个结点以及每个点初始时对应的权值wi。起始时点与点之间没有连边。有3类操作: 1、bridge A B:询问结点A与结点B是否连通。如果是则输出“no”。否则输出“yes”,并且在结点A和结点B之间连一条无向边。 2、penguins A X:将结点A对应的权值wA修改为X。 3、excursion A B:如果结点A和结点B不连通,则输出“impossible”。否则输出结点A到结点B的路径上的点对应的权值的和。给出q个操作,要求在线处理所有操作。数据范围:1<=n<=30000, 1<=q<=300000, 0<=wi<=1000。
输入
第一行包含一个整数n(1<=n<=30000),表示节点的数目。第二行包含n个整数,第i个整数表示第i个节点初始时对应的权值。第三行包含一个整数q(1<=n<=300000),表示操作的数目。以下q行,每行包含一个操作,操作的类别见题目描述。任意时刻每个节点对应的权值都是1到1000的整数。
输出
输出所有bridge操作和excursion操作对应的输出,每个一行。
样例输入
5
4 2 4 5 6
10
excursion 1 1
excursion 1 2
bridge 1 2
excursion 1 2
bridge 3 4
bridge 3 5
excursion 4 5
bridge 1 3
excursion 2 4
excursion 2 5
样例输出
4
impossible
yes
6
yes
yes
15
yes
15
16
题解
LCT,没有删边操作
坑点在于bridge操作时连通输出no,不连通输出yes(估计是翻译问题)
#include <cstdio>
#include <algorithm>
#define N 30010
#define lson c[0][x]
#define rson c[1][x]
using namespace std;
int fa[N] , c[2][N] , w[N] , sum[N] , rev[N];
char str[15];
void pushup(int x)
{
sum[x] = sum[lson] + sum[rson] + w[x];
}
void pushdown(int x)
{
if(rev[x])
{
swap(c[0][lson] , c[1][lson]);
swap(c[0][rson] , c[1][rson]);
rev[lson] ^= 1 , rev[rson] ^= 1;
rev[x] = 0;
}
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , rson = t , pushup(x) , t = x , x = fa[x];
}
void makeroot(int x)
{
access(x) , splay(x);
swap(lson , rson) , rev[x] ^= 1;
}
int find(int x)
{
access(x) , splay(x);
while(lson) pushdown(x) , x = lson;
return x;
}
void link(int x , int y)
{
makeroot(x) , fa[x] = y;
}
void split(int x , int y)
{
makeroot(y) , access(x) , splay(x);
}
int main()
{
int n , m , i , x , y;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , sum[i] = w[i];
scanf("%d" , &m);
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'b')
{
if(find(x) == find(y)) printf("no\n");
else printf("yes\n") , link(x , y);
}
else if(str[0] == 'p') split(x , x) , w[x] = sum[x] = y;
else
{
if(find(x) == find(y)) split(x , y) , printf("%d\n" , sum[x]);
else printf("impossible\n");
}
}
return 0;
}