1. LOWESS

用kNN做平均回归:
\[
\hat{f(x)} = Ave(y_i | x_i \in N_k(x))
\]
其中,\(N_k(x)\)为距离点x最近k个点组成的邻域集合(neighborhood set)。这种邻域平均回归存在很多缺点:

  • 没有考虑到不同距离的邻近点应有不同的权重;
  • 拟合的曲线不连续(discontinuous),如下图。

局部加权回归LOWESS-LMLPHP

因此引入kernel加权平滑:
\[
\hat{f(x_0)} = \frac{ \sum_{i=1}^{N} K_{\lambda}(x_0, x_i)y_i }{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}
\]
比如,Epanechnikov 二次kernel:
\[
K_{\lambda}(x_0, x_i) = D(\frac{|x_0 - x_i|}{\lambda})
\]

\[
D(t) = \left \{
{
\matrix {
{\frac{3}{4} (1-t^2) } & {for |t| < 1} \cr
{ 0} & {otherwise} \cr
}
}
\right.
\]

其中,\(\lambda\)为kernel的参数,称之为window width。对于kNN,只考虑最近的k个点影响;基于此,
\[
\lambda = |x_0 - x_{[k]}|
\]

其中,\(x_{[k]}\)为距离\(x_0\)第k近的点。如上图,经kernel加权平滑后,回归拟合的曲线为连续的了。但是,这种kernel回归同样存在着边界(boundary)问题,如下图:

局部加权回归LOWESS-LMLPHP

对于x序列的开始与结束区段的点,其左右邻域是不对称的,导致了平滑后的值偏大或偏小。因此,需要对权值做再修正,假定对\(x_0\)的估计值:_

\[
\hat{f(x_0)} = \sum_{j=0}^d \beta_j x_0^{j}
\]

定义目标函数:
\[
\min_{\beta} \sum_{i=1}^N K_{\lambda}(x_0, x_i) [y_i - \sum_{j=0}^d \beta_j x_i^j]^2
\]

\[
B = \begin{pmatrix}
1 & x_1 & \cdots & x_1^d \\
1 & x_2 & \cdots & x_2^d \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_N & \cdots & x_N^d \\
\end{pmatrix}
\]

\[
W_{x_0} = \begin{pmatrix}
K_{\lambda}(x_0, x_1) & 0 & \cdots & 0 \\
0 & K_{\lambda}(x_0, x_2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & K_{\lambda}(x_0, x_N) \\
\end{pmatrix}
\]

\[
\Delta = \begin{pmatrix}
\beta_0, \beta_1, \cdots, \beta_N
\end{pmatrix}^T
\]

\[
Y = \begin{pmatrix}
y_1, y_2, \cdots, y_N
\end{pmatrix}^T
\]

那么,目标函数可改写为
\[
\min_{\Delta} (Y-B\Delta)^T W_{x_0} (Y-B\Delta)
\]

求偏导,可得到
\[
\Delta = (B^T W_{x_0} B)^{-1} (B^T W_{x_0} Y)
\]

那么,估计值
\[
\begin{aligned}
\hat{f(x_0)} &= e(x_0) (B^T W_{x_0} B)^{-1} (B^T W_{x_0} Y) \\
& = \sum_i w_i (x_0) y_i
\end{aligned}
\]

其中,\(e(x_0) = \begin{pmatrix} 1, x_0, \cdots, x_0^d \end{pmatrix}\)。上述回归方法称之为LOWESS (LOcal Weighted regrESSion)。

2. Robust LOWESS

Robust LOWESS是Cleveland [1] 在LOWESS基础上提出来的robust回归方法,能避免outlier对回归的影响。在计算完估计值后,计算残差:
\[
e_i = y_i - \hat{f(x_i)}
\]
根据残差计算robustnest weight:
\[
\delta_i = B(e_i/6s)
\]
其中,\(s\)为残差绝对值序列\(|e_i|\)d的中位值(median),\(B\)函数为bisquare函数:

\[
B(u) = \left \{
{
\matrix {
{(1-u^2)^2 } & {for \quad 0 \le u < 1} \cr
{ 0 } & {for \quad u \ge 1} \cr
}
}
\right.
\]

然后,用robustne weight乘以kernel weight作为\(W_{x_0}\)的新weight。如此,便剔除了残差较大的异常点对于回归的影响。这里有Python版实现。

3. 参考资料

[1] Trevor Hastie, Robert Tibshirani, Jerome H. Friedman. The elements of statistical learning. Springer, Berlin: Springer series in statistics, 2009.
[2] Cleveland, William S. "Robust locally weighted regression and smoothing scatterplots." Journal of the American statistical association 74.368 (1979): 829-836.
[3] peterf, The Local Polynomial Regression Estimator.

04-14 09:01