多分类问题

在一个多分类问题中,因变量y有k个取值,即Softmax回归(Softmax Regression-LMLPHP。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。

多分类问题符合多项分布。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的Softmax回归(Softmax Regression) 

推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数Softmax回归(Softmax Regression-LMLPHP即为Softmax回归的分类模型。

证明多项分布属于指数分布族

多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量Softmax回归(Softmax Regression-LMLPHPSoftmax回归(Softmax Regression-LMLPHP…,Softmax回归(Softmax Regression-LMLPHP表示。这个k变量和为1,即满足:

Softmax回归(Softmax Regression-LMLPHP

Softmax回归(Softmax Regression-LMLPHP可以用前k-1个变量来表示,即:

Softmax回归(Softmax Regression-LMLPHP

使用广义线性模型拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为:

Softmax回归(Softmax Regression-LMLPHP

在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号Softmax回归(Softmax Regression-LMLPHP表示向量T(y)的第i个元素。

在这里引入一个新符号:Softmax回归(Softmax Regression-LMLPHP,如果括号内为true则这个符号取1,反之取0,即Softmax回归(Softmax Regression-LMLPHPSoftmax回归(Softmax Regression-LMLPHP。所以,T(y)与y的关系就可以表示为Softmax回归(Softmax Regression-LMLPHP

Softmax回归(Softmax Regression-LMLPHPSoftmax回归(Softmax Regression-LMLPHP关系为:

Softmax回归(Softmax Regression-LMLPHP

即:

Softmax回归(Softmax Regression-LMLPHP

多项分布表达式转化为指数分布族表达式过程如下:

Softmax回归(Softmax Regression-LMLPHP

其中:

Softmax回归(Softmax Regression-LMLPHP

变换过程:

第一步:Softmax回归(Softmax Regression-LMLPHP取值为Softmax回归(Softmax Regression-LMLPHPSoftmax回归(Softmax Regression-LMLPHP…,Softmax回归(Softmax Regression-LMLPHP中的一个,取决于y的取值。当y=i时,这一步可以理解为Softmax回归(Softmax Regression-LMLPHP

第二步:消去Softmax回归(Softmax Regression-LMLPHP

第三步:根据Softmax回归(Softmax Regression-LMLPHP

第四、五步:转换为广义线性模型的表达格式。

多项分布表达式可以表示为指数分布族表达式的格式,所以它属于指数分布族,那么就可以用广义线性模型来拟合这个多项式分布模型。

Softmax函数(Softmax Function)

在使用广义线性模型拟合这个多项式分布模型之前,需要先推导一个函数,这个函数在广义线性模型的目标函数中会用到。这个函数称为Softmax函数(Softmax Function)

由η表达式可得:

Softmax回归(Softmax Regression-LMLPHP

这是Softmax回归(Softmax Regression-LMLPHP关于Softmax回归(Softmax Regression-LMLPHP的表达式,把它转化为Softmax回归(Softmax Regression-LMLPHP关于Softmax回归(Softmax Regression-LMLPHP的表达式过程为:

为了方便,令Softmax回归(Softmax Regression-LMLPHP,那么

Softmax回归(Softmax Regression-LMLPHP

因为:

Softmax回归(Softmax Regression-LMLPHP

所以:

Softmax回归(Softmax Regression-LMLPHP

这个Softmax回归(Softmax Regression-LMLPHP关于Softmax回归(Softmax Regression-LMLPHP的的函数称为Softmax函数(Softmax Function)

使用广义线性构建模型

根据广义线性模型的假设3:

Softmax回归(Softmax Regression-LMLPHP

θ是模型中的参数,为了符号上的方便我们定义Softmax回归(Softmax Regression-LMLPHP,所以

Softmax回归(Softmax Regression-LMLPHP

所以模型在给定x的条件下y的分布Softmax回归(Softmax Regression-LMLPHP为:

Softmax回归(Softmax Regression-LMLPHP

上面的表达式求解的是在y=i时的概率。在Softmax回归这个广义线性模型中,目标函数是:

Softmax回归(Softmax Regression-LMLPHP

Softmax回归目标函数Softmax回归(Softmax Regression-LMLPHP的输出是k个概率,即Softmax回归(Softmax Regression-LMLPHP其中i=1,2,…,k(虽然输出的是k-1个值,但是第k个值Softmax回归(Softmax Regression-LMLPHP可以由Softmax回归(Softmax Regression-LMLPHP求出),求解了这个目标函数,我们就构造出了分类模型。

目标函数推导过程如下:

Softmax回归(Softmax Regression-LMLPHP

现在求解目标函数Softmax回归(Softmax Regression-LMLPHP还差最后一步:参数拟合的问题。跟我们之前的参数拟合方法类似,我们有m个训练样本,θ的似然函数为:

Softmax回归(Softmax Regression-LMLPHP

最大化似然函数来求解最优的参数θ,可以使用梯度上升或者牛顿方法。

求解了最优的参数θ后,就可以使用目标函数Softmax回归(Softmax Regression-LMLPHP进行分类。使用函数Softmax回归(Softmax Regression-LMLPHP进行多分类的方式就叫Softmax回归(Softmax Regression)

05-11 20:56