Digit Recognizer

Kaggle—Digit Recognizer竞赛-LMLPHP

手写体数字识别  MNIST数据集

本赛 train 42000样例 test 28000样例,原始MNIST是 train 60000 test 10000

我分别用 Logistic Regression/ 784-200-200-10的Sparse AutoEncoder/Convolution AutoEncoder刷了下

Kaggle—Digit Recognizer竞赛-LMLPHP

Kaggle—Digit Recognizer竞赛-LMLPHP

===============方法一、 One-Vs-All 的Logistic Regression===================

%%
ccc
load digitData %%
input_layer_size = 28*28;
num_ys = 10; X = train_x;
[~,y] = max(train_y, [], 2); lambda = 0.1;
lambda = 100;
[all_theta] = oneVsAll(X, y, num_ys, lambda); %% ================ Part: Predict for One-Vs-All ================
% After ...
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100); %% ============== 计算test准确度(test_y 是基于KNN的 只作为参考)
[~,test_y] = max(test_y, [], 2); pred = predictOneVsAll(all_theta, test_x);
fprintf('\nTest Set Accuracy: %f\n', mean(double(pred == test_y)) * 100); %% write csv file
pred(pred==10) = 0;
M = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',M)

Kaggle—Digit Recognizer竞赛-LMLPHP

===============方法二、 784-200-200-10的Sparse AutoEncoder ===================

%% STEP 0: Here we provide the relevant parameters values that will
tic inputDim = 28;
inputSize = 28 * 28;
numClasses = 10;
hiddenSizeL1 = 200; % Layer 1 Hidden Size
hiddenSizeL2 = 200; % Layer 2 Hidden Size
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-3; % weight decay parameter
beta = 3; % weight of sparsity penalty term
maxIter = 100; %% STEP 1: Load data
load digitData
trainData = train_x';
[~, trainLabels] = max(train_y, [], 2);
%%% 增加数据 %%% ZCA白化 像素值范围变化 []
% trainData = ZCAWhite(trainData); %% STEP 2: Train the first sparse autoencoder
sae1Theta = initializeParameters(hiddenSizeL1, inputSize); options.Method = 'lbfgs';
options.maxIter = 200; % Maximum number of iterations of L-BFGS to run
options.display = 'on';
[sae1OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSizeL1, ...
lambda, sparsityParam, ...
beta, trainData), ...
sae1Theta, options); % -------------------------------------------------------------------------
W1 = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), hiddenSizeL1, inputSize);
display_network(W1', 12); %% STEP 2: Train the second sparse autoencoder
[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
inputSize, trainData); % Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1); options.Method = 'lbfgs';
options.maxIter = 100; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [sae2OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
size(sae1Features,1), hiddenSizeL2, ...
lambda, sparsityParam, ...
beta, sae1Features), ...
sae2Theta, options); %% STEP 3: Train the softmax classifier [sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
hiddenSizeL1, sae1Features); % Randomly initialize the parameters
saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1); lambda = 1e-4;
options.maxIter = 200;
softmaxModel = softmaxTrain(hiddenSizeL2, numClasses, lambda, ...
sae2Features, trainLabels, options);
% -------------------------------------------------------------------------
saeSoftmaxOptTheta = softmaxModel.optTheta(:); %% STEP 5: Finetune softmax model % Implement the stackedAECost to give the combined cost of the whole model
% then run this cell. % Initialize the stack using the parameters learned
stack = cell(2,1);
stack{1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ...
hiddenSizeL1, inputSize);
stack{1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ...
hiddenSizeL2, hiddenSizeL1);
stack{2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2); % Initialize the parameters for the deep model
[stackparams, netconfig] = stack2params(stack);
stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ]; options.Method = 'lbfgs';
options.maxIter = 400; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, ...
hiddenSizeL2 , hiddenSizeL2, ...
numClasses, netconfig, ...
lambda, trainData, trainLabels), ...
stackedAETheta, options); % ------------------------------------------------------------------------- %% STEP 6: Test
% Instructions: You will need to complete the code in stackedAEPredict.m
% before running this part of the code
% testData = test_x';
[~, testLabels] = max(test_y, [], 2); [pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * 100); [pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * 100);
toc pred(pred==10) = 0;
tmp = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',tmp)

test准确率 基于Knn的pred-label

Kaggle—Digit Recognizer竞赛-LMLPHP

===============方法三、 784-200-200-10的Sparse AutoEncoder ===================

使用DeepLearnToolbox

%%
clear
close all
clc %% load data label
load digitData %%% pre-processing
%% ex2 train a X-X hidden unit SDAE and use it to initialize a FFNN
% Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
nDim = [784 200 200];
sae = saesetup(nDim);
sae.ae{1}.activation_function = 'sigm';
sae.ae{1}.learningRate = 1;
sae.ae{1}.inputZeroMaskedFraction = 0.5; sae.ae{2}.activation_function = 'sigm';
sae.ae{2}.learningRate = 1;
sae.ae{2}.inputZeroMaskedFraction = 0.5; % sae.ae{3}.activation_function = 'sigm';
% sae.ae{3}.learningRate = 0.8;
% sae.ae{3}.inputZeroMaskedFraction = 0.5; opts.numepochs = 30;
opts.batchsize = 100;
% opts.sparsityTarget = 0.05;%$LiFeiteng
% opts.nonSparsityPenalty = 1;
opts.dropoutFraction = 0.5; sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)') %% Use the SDAE to initialize a FFNN
nn = nnsetup([nDim 10]);
nn.activation_function = 'sigm';%'sigm';
nn.learningRate = 1; %add pretrained weights
nn.W{1} = sae.ae{1}.W{1};
nn.W{2} = sae.ae{2}.W{1};
%nn.W{3} = sae.ae{3}.W{1}; % Train the FFNN
fprintf('\n')
opts.numepochs = 40;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts); %% test
[er, bad, pred] = nntest(nn, test_x, test_y); pred(pred==10) = 0;
tmp = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',tmp)

start of the art!

==================================================================

排名200多好伤感!!!

Kaggle—Digit Recognizer竞赛-LMLPHP

Leaderboard上好多100%的,其实我也可以做到——作弊——把错误的部分 逐一用肉眼扫下,更改test_label就可,不过这就没意思了。

Kaggle—Digit Recognizer竞赛-LMLPHP

Y. LeCun 维护的

THE MNIST DATABASE

最好成绩:

Kaggle—Digit Recognizer竞赛-LMLPHP

==============================

可以提高准确率的方法:

1.增加train的个数,对增加原始图像 平移 旋转等构造新图像;

2.对图像做预处理等;直接用PCA or ZCA白化 会改变像素值范围;

3.卷积-池化等加入Deep Networks中去;

4.New Model。。。

04-25 23:42